139 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// This file is part of Eigen, a lightweight C++ template library
 | 
						|
// for linear algebra.
 | 
						|
//
 | 
						|
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
 | 
						|
//
 | 
						|
// Eigen is free software; you can redistribute it and/or
 | 
						|
// modify it under the terms of the GNU Lesser General Public
 | 
						|
// License as published by the Free Software Foundation; either
 | 
						|
// version 3 of the License, or (at your option) any later version.
 | 
						|
//
 | 
						|
// Alternatively, you can redistribute it and/or
 | 
						|
// modify it under the terms of the GNU General Public License as
 | 
						|
// published by the Free Software Foundation; either version 2 of
 | 
						|
// the License, or (at your option) any later version.
 | 
						|
//
 | 
						|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
 | 
						|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 | 
						|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
 | 
						|
// GNU General Public License for more details.
 | 
						|
//
 | 
						|
// You should have received a copy of the GNU Lesser General Public
 | 
						|
// License and a copy of the GNU General Public License along with
 | 
						|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
#include "main.h"
 | 
						|
#include <Eigen/QR>
 | 
						|
 | 
						|
template<typename MatrixType> void householder(const MatrixType& m)
 | 
						|
{
 | 
						|
  typedef typename MatrixType::Index Index;
 | 
						|
  static bool even = true;
 | 
						|
  even = !even;
 | 
						|
  /* this test covers the following files:
 | 
						|
     Householder.h
 | 
						|
  */
 | 
						|
  Index rows = m.rows();
 | 
						|
  Index cols = m.cols();
 | 
						|
 | 
						|
  typedef typename MatrixType::Scalar Scalar;
 | 
						|
  typedef typename NumTraits<Scalar>::Real RealScalar;
 | 
						|
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
 | 
						|
  typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType;
 | 
						|
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
 | 
						|
  typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType;
 | 
						|
  typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType;
 | 
						|
 | 
						|
  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> RightSquareMatrixType;
 | 
						|
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic> VBlockMatrixType;
 | 
						|
  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType;
 | 
						|
  
 | 
						|
  Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp((std::max)(rows,cols));
 | 
						|
  Scalar* tmp = &_tmp.coeffRef(0,0);
 | 
						|
 | 
						|
  Scalar beta;
 | 
						|
  RealScalar alpha;
 | 
						|
  EssentialVectorType essential;
 | 
						|
 | 
						|
  VectorType v1 = VectorType::Random(rows), v2;
 | 
						|
  v2 = v1;
 | 
						|
  v1.makeHouseholder(essential, beta, alpha);
 | 
						|
  v1.applyHouseholderOnTheLeft(essential,beta,tmp);
 | 
						|
  VERIFY_IS_APPROX(v1.norm(), v2.norm());
 | 
						|
  if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows-1).norm(), v1.norm());
 | 
						|
  v1 = VectorType::Random(rows);
 | 
						|
  v2 = v1;
 | 
						|
  v1.applyHouseholderOnTheLeft(essential,beta,tmp);
 | 
						|
  VERIFY_IS_APPROX(v1.norm(), v2.norm());
 | 
						|
 | 
						|
  MatrixType m1(rows, cols),
 | 
						|
             m2(rows, cols);
 | 
						|
 | 
						|
  v1 = VectorType::Random(rows);
 | 
						|
  if(even) v1.tail(rows-1).setZero();
 | 
						|
  m1.colwise() = v1;
 | 
						|
  m2 = m1;
 | 
						|
  m1.col(0).makeHouseholder(essential, beta, alpha);
 | 
						|
  m1.applyHouseholderOnTheLeft(essential,beta,tmp);
 | 
						|
  VERIFY_IS_APPROX(m1.norm(), m2.norm());
 | 
						|
  if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1,0,rows-1,cols).norm(), m1.norm());
 | 
						|
  VERIFY_IS_MUCH_SMALLER_THAN(internal::imag(m1(0,0)), internal::real(m1(0,0)));
 | 
						|
  VERIFY_IS_APPROX(internal::real(m1(0,0)), alpha);
 | 
						|
 | 
						|
  v1 = VectorType::Random(rows);
 | 
						|
  if(even) v1.tail(rows-1).setZero();
 | 
						|
  SquareMatrixType m3(rows,rows), m4(rows,rows);
 | 
						|
  m3.rowwise() = v1.transpose();
 | 
						|
  m4 = m3;
 | 
						|
  m3.row(0).makeHouseholder(essential, beta, alpha);
 | 
						|
  m3.applyHouseholderOnTheRight(essential,beta,tmp);
 | 
						|
  VERIFY_IS_APPROX(m3.norm(), m4.norm());
 | 
						|
  if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0,1,rows,rows-1).norm(), m3.norm());
 | 
						|
  VERIFY_IS_MUCH_SMALLER_THAN(internal::imag(m3(0,0)), internal::real(m3(0,0)));
 | 
						|
  VERIFY_IS_APPROX(internal::real(m3(0,0)), alpha);
 | 
						|
 | 
						|
  // test householder sequence on the left with a shift
 | 
						|
 | 
						|
  Index shift = internal::random<Index>(0, std::max<Index>(rows-2,0));
 | 
						|
  Index brows = rows - shift;
 | 
						|
  m1.setRandom(rows, cols);
 | 
						|
  HBlockMatrixType hbm = m1.block(shift,0,brows,cols);
 | 
						|
  HouseholderQR<HBlockMatrixType> qr(hbm);
 | 
						|
  m2 = m1;
 | 
						|
  m2.block(shift,0,brows,cols) = qr.matrixQR();
 | 
						|
  HCoeffsVectorType hc = qr.hCoeffs().conjugate();
 | 
						|
  HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc);
 | 
						|
  hseq.setLength(hc.size()).setShift(shift);
 | 
						|
  VERIFY(hseq.length() == hc.size());
 | 
						|
  VERIFY(hseq.shift() == shift);
 | 
						|
 | 
						|
  MatrixType m5 = m2;
 | 
						|
  m5.block(shift,0,brows,cols).template triangularView<StrictlyLower>().setZero();
 | 
						|
  VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly
 | 
						|
  m3 = hseq;
 | 
						|
  VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying
 | 
						|
 | 
						|
  // test householder sequence on the right with a shift
 | 
						|
 | 
						|
  TMatrixType tm2 = m2.transpose();
 | 
						|
  HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc);
 | 
						|
  rhseq.setLength(hc.size()).setShift(shift);
 | 
						|
  VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly
 | 
						|
  m3 = rhseq;
 | 
						|
  VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying
 | 
						|
}
 | 
						|
 | 
						|
void test_householder()
 | 
						|
{
 | 
						|
  for(int i = 0; i < g_repeat; i++) {
 | 
						|
    CALL_SUBTEST_1( householder(Matrix<double,2,2>()) );
 | 
						|
    CALL_SUBTEST_2( householder(Matrix<float,2,3>()) );
 | 
						|
    CALL_SUBTEST_3( householder(Matrix<double,3,5>()) );
 | 
						|
    CALL_SUBTEST_4( householder(Matrix<float,4,4>()) );
 | 
						|
    CALL_SUBTEST_5( householder(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
 | 
						|
    CALL_SUBTEST_6( householder(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
 | 
						|
    CALL_SUBTEST_7( householder(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
 | 
						|
    CALL_SUBTEST_8( householder(Matrix<double,1,1>()) );
 | 
						|
  }
 | 
						|
}
 |