118 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			118 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// This file is part of Eigen, a lightweight C++ template library
 | 
						|
// for linear algebra. Eigen itself is part of the KDE project.
 | 
						|
//
 | 
						|
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
 | 
						|
//
 | 
						|
// Eigen is free software; you can redistribute it and/or
 | 
						|
// modify it under the terms of the GNU Lesser General Public
 | 
						|
// License as published by the Free Software Foundation; either
 | 
						|
// version 3 of the License, or (at your option) any later version.
 | 
						|
//
 | 
						|
// Alternatively, you can redistribute it and/or
 | 
						|
// modify it under the terms of the GNU General Public License as
 | 
						|
// published by the Free Software Foundation; either version 2 of
 | 
						|
// the License, or (at your option) any later version.
 | 
						|
//
 | 
						|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
 | 
						|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 | 
						|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
 | 
						|
// GNU General Public License for more details.
 | 
						|
//
 | 
						|
// You should have received a copy of the GNU Lesser General Public
 | 
						|
// License and a copy of the GNU General Public License along with
 | 
						|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
#include "main.h"
 | 
						|
#include <Eigen/Geometry>
 | 
						|
#include <Eigen/LU>
 | 
						|
#include <Eigen/SVD>
 | 
						|
 | 
						|
/* this test covers the following files:
 | 
						|
   Geometry/OrthoMethods.h
 | 
						|
*/
 | 
						|
 | 
						|
template<typename Scalar> void orthomethods_3()
 | 
						|
{
 | 
						|
  typedef Matrix<Scalar,3,3> Matrix3;
 | 
						|
  typedef Matrix<Scalar,3,1> Vector3;
 | 
						|
 | 
						|
  Vector3 v0 = Vector3::Random(),
 | 
						|
          v1 = Vector3::Random(),
 | 
						|
          v2 = Vector3::Random();
 | 
						|
 | 
						|
  // cross product
 | 
						|
  VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1));
 | 
						|
  Matrix3 mat3;
 | 
						|
  mat3 << v0.normalized(),
 | 
						|
         (v0.cross(v1)).normalized(),
 | 
						|
         (v0.cross(v1).cross(v0)).normalized();
 | 
						|
  VERIFY(mat3.isUnitary());
 | 
						|
 | 
						|
 | 
						|
  // colwise/rowwise cross product
 | 
						|
  mat3.setRandom();
 | 
						|
  Vector3 vec3 = Vector3::Random();
 | 
						|
  Matrix3 mcross;
 | 
						|
  int i = ei_random<int>(0,2);
 | 
						|
  mcross = mat3.colwise().cross(vec3);
 | 
						|
  VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3));
 | 
						|
  mcross = mat3.rowwise().cross(vec3);
 | 
						|
  VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
template<typename Scalar, int Size> void orthomethods(int size=Size)
 | 
						|
{
 | 
						|
  typedef Matrix<Scalar,Size,1> VectorType;
 | 
						|
  typedef Matrix<Scalar,3,Size> Matrix3N;
 | 
						|
  typedef Matrix<Scalar,Size,3> MatrixN3;
 | 
						|
  typedef Matrix<Scalar,3,1> Vector3;
 | 
						|
 | 
						|
  VectorType v0 = VectorType::Random(size),
 | 
						|
             v1 = VectorType::Random(size),
 | 
						|
             v2 = VectorType::Random(size);
 | 
						|
 | 
						|
  // unitOrthogonal
 | 
						|
  VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1));
 | 
						|
  VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1));
 | 
						|
 | 
						|
  if (size>3)
 | 
						|
  {
 | 
						|
    v0.template start<3>().setZero();
 | 
						|
    v0.end(size-3).setRandom();
 | 
						|
 | 
						|
    VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1));
 | 
						|
    VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1));
 | 
						|
  }
 | 
						|
 | 
						|
  // colwise/rowwise cross product
 | 
						|
  Vector3 vec3 = Vector3::Random();
 | 
						|
  int i = ei_random<int>(0,size-1);
 | 
						|
 | 
						|
  Matrix3N mat3N(3,size), mcross3N(3,size);
 | 
						|
  mat3N.setRandom();
 | 
						|
  mcross3N = mat3N.colwise().cross(vec3);
 | 
						|
  VERIFY_IS_APPROX(mcross3N.col(i), mat3N.col(i).cross(vec3));
 | 
						|
 | 
						|
  MatrixN3 matN3(size,3), mcrossN3(size,3);
 | 
						|
  matN3.setRandom();
 | 
						|
  mcrossN3 = matN3.rowwise().cross(vec3);
 | 
						|
  VERIFY_IS_APPROX(mcrossN3.row(i), matN3.row(i).cross(vec3));
 | 
						|
}
 | 
						|
 | 
						|
void test_geo_orthomethods()
 | 
						|
{
 | 
						|
  for(int i = 0; i < g_repeat; i++) {
 | 
						|
    CALL_SUBTEST( orthomethods_3<float>() );
 | 
						|
    CALL_SUBTEST( orthomethods_3<double>() );
 | 
						|
    CALL_SUBTEST( (orthomethods<float,2>()) );
 | 
						|
    CALL_SUBTEST( (orthomethods<double,2>()) );
 | 
						|
    CALL_SUBTEST( (orthomethods<float,3>()) );
 | 
						|
    CALL_SUBTEST( (orthomethods<double,3>()) );
 | 
						|
    CALL_SUBTEST( (orthomethods<float,7>()) );
 | 
						|
    CALL_SUBTEST( (orthomethods<double,8>()) );
 | 
						|
    CALL_SUBTEST( (orthomethods<float,Dynamic>(36)) );
 | 
						|
    CALL_SUBTEST( (orthomethods<double,Dynamic>(35)) );
 | 
						|
  }
 | 
						|
}
 |