math. Now the user has to define himself EIGEN_USE_COMPLEX if he wants complex support. Remove TVMET_OPTIMIZE. More cleanup.
379 lines
11 KiB
C++
379 lines
11 KiB
C++
/*
|
|
* Tiny Vector Matrix Library
|
|
* Dense Vector Matrix Libary of Tiny size using Expression Templates
|
|
*
|
|
* Copyright (C) 2001 - 2003 Olaf Petzold <opetzold@users.sourceforge.net>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* $Id: MatrixEval.h,v 1.14 2004/06/10 16:36:55 opetzold Exp $
|
|
*/
|
|
|
|
#ifndef TVMET_MATRIX_EVAL_H
|
|
#define TVMET_MATRIX_EVAL_H
|
|
|
|
namespace tvmet {
|
|
|
|
|
|
/**
|
|
* \fn bool all_elements(const XprMatrix<E, Rows, Cols>& e)
|
|
* \brief check on statements for all elements
|
|
* \ingroup _unary_function
|
|
* This is for use with boolean operators like
|
|
* \par Example:
|
|
* \code
|
|
* all_elements(matrix > 0) {
|
|
* // true branch
|
|
* } else {
|
|
* // false branch
|
|
* }
|
|
* \endcode
|
|
* \sa \ref compare
|
|
*/
|
|
template<class E, int Rows, int Cols>
|
|
inline
|
|
bool all_elements(const XprMatrix<E, Rows, Cols>& e) {
|
|
return meta::Matrix<Rows, Cols, 0, 0>::all_elements(e);
|
|
}
|
|
|
|
|
|
/**
|
|
* \fn bool any_elements(const XprMatrix<E, Rows, Cols>& e)
|
|
* \brief check on statements for any elements
|
|
* \ingroup _unary_function
|
|
* This is for use with boolean operators like
|
|
* \par Example:
|
|
* \code
|
|
* any_elements(matrix > 0) {
|
|
* // true branch
|
|
* } else {
|
|
* // false branch
|
|
* }
|
|
* \endcode
|
|
* \sa \ref compare
|
|
*/
|
|
template<class E, int Rows, int Cols>
|
|
inline
|
|
bool any_elements(const XprMatrix<E, Rows, Cols>& e) {
|
|
return meta::Matrix<Rows, Cols, 0, 0>::any_elements(e);
|
|
}
|
|
|
|
|
|
/*
|
|
* trinary evaluation functions with matrizes and xpr of
|
|
*
|
|
* XprMatrix<E1, Rows, Cols> ? Matrix<T2, Rows, Cols> : Matrix<T3, Rows, Cols>
|
|
* XprMatrix<E1, Rows, Cols> ? Matrix<T2, Rows, Cols> : XprMatrix<E3, Rows, Cols>
|
|
* XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : Matrix<T3, Rows, Cols>
|
|
* XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : XprMatrix<E3, Rows, Cols>
|
|
*/
|
|
|
|
/**
|
|
* \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const Matrix<T2, Rows, Cols>& m2, const Matrix<T3, Rows, Cols>& m3)
|
|
* \brief Evals the matrix expressions.
|
|
* \ingroup _trinary_function
|
|
* This eval is for the a?b:c syntax, since it's not allowed to overload
|
|
* these operators.
|
|
*/
|
|
template<class E1, class T2, class T3, int Rows, int Cols>
|
|
inline
|
|
XprMatrix<
|
|
XprEval<
|
|
XprMatrix<E1, Rows, Cols>,
|
|
MatrixConstReference<T2, Rows, Cols>,
|
|
MatrixConstReference<T3, Rows, Cols>
|
|
>,
|
|
Rows, Cols
|
|
>
|
|
eval(const XprMatrix<E1, Rows, Cols>& e1,
|
|
const Matrix<T2, Rows, Cols>& m2,
|
|
const Matrix<T3, Rows, Cols>& m3) {
|
|
typedef XprEval<
|
|
XprMatrix<E1, Rows, Cols>,
|
|
MatrixConstReference<T2, Rows, Cols>,
|
|
MatrixConstReference<T3, Rows, Cols>
|
|
> expr_type;
|
|
return XprMatrix<expr_type, Rows, Cols>(
|
|
expr_type(e1, m2.const_ref(), m3.const_ref()));
|
|
}
|
|
|
|
|
|
/**
|
|
* \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const Matrix<T2, Rows, Cols>& m2, const XprMatrix<E3, Rows, Cols>& e3)
|
|
* \brief Evals the matrix expressions.
|
|
* \ingroup _trinary_function
|
|
* This eval is for the a?b:c syntax, since it's not allowed to overload
|
|
* these operators.
|
|
*/
|
|
template<class E1, class T2, class E3, int Rows, int Cols>
|
|
inline
|
|
XprMatrix<
|
|
XprEval<
|
|
XprMatrix<E1, Rows, Cols>,
|
|
MatrixConstReference<T2, Rows, Cols>,
|
|
XprMatrix<E3, Rows, Cols>
|
|
>,
|
|
Rows, Cols
|
|
>
|
|
eval(const XprMatrix<E1, Rows, Cols>& e1,
|
|
const Matrix<T2, Rows, Cols>& m2,
|
|
const XprMatrix<E3, Rows, Cols>& e3) {
|
|
typedef XprEval<
|
|
XprMatrix<E1, Rows, Cols>,
|
|
MatrixConstReference<T2, Rows, Cols>,
|
|
XprMatrix<E3, Rows, Cols>
|
|
> expr_type;
|
|
return XprMatrix<expr_type, Rows, Cols>(
|
|
expr_type(e1, m2.const_ref(), e3));
|
|
}
|
|
|
|
|
|
/**
|
|
* \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const Matrix<T3, Rows, Cols>& m3)
|
|
* \brief Evals the matrix expressions.
|
|
* \ingroup _trinary_function
|
|
* This eval is for the a?b:c syntax, since it's not allowed to overload
|
|
* these operators.
|
|
*/
|
|
template<class E1, class E2, class T3, int Rows, int Cols>
|
|
inline
|
|
XprMatrix<
|
|
XprEval<
|
|
XprMatrix<E1, Rows, Cols>,
|
|
XprMatrix<E2, Rows, Cols>,
|
|
MatrixConstReference<T3, Rows, Cols>
|
|
>,
|
|
Rows, Cols
|
|
>
|
|
eval(const XprMatrix<E1, Rows, Cols>& e1,
|
|
const XprMatrix<E2, Rows, Cols>& e2,
|
|
const Matrix<T3, Rows, Cols>& m3) {
|
|
typedef XprEval<
|
|
XprMatrix<E1, Rows, Cols>,
|
|
XprMatrix<E2, Rows, Cols>,
|
|
MatrixConstReference<T3, Rows, Cols>
|
|
> expr_type;
|
|
return XprMatrix<expr_type, Rows, Cols>(
|
|
expr_type(e1, e2, m3.const_ref()));
|
|
}
|
|
|
|
|
|
/**
|
|
* \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const XprMatrix<E3, Rows, Cols>& e3)
|
|
* \brief Evals the matrix expressions.
|
|
* \ingroup _trinary_function
|
|
* This eval is for the a?b:c syntax, since it's not allowed to overload
|
|
* these operators.
|
|
*/
|
|
template<class E1, class E2, class E3, int Rows, int Cols>
|
|
inline
|
|
XprMatrix<
|
|
XprEval<
|
|
XprMatrix<E1, Rows, Cols>,
|
|
XprMatrix<E2, Rows, Cols>,
|
|
XprMatrix<E3, Rows, Cols>
|
|
>,
|
|
Rows, Cols
|
|
>
|
|
eval(const XprMatrix<E1, Rows, Cols>& e1,
|
|
const XprMatrix<E2, Rows, Cols>& e2,
|
|
const XprMatrix<E3, Rows, Cols>& e3) {
|
|
typedef XprEval<
|
|
XprMatrix<E1, Rows, Cols>,
|
|
XprMatrix<E2, Rows, Cols>,
|
|
XprMatrix<E3, Rows, Cols>
|
|
> expr_type;
|
|
return XprMatrix<expr_type, Rows, Cols>(expr_type(e1, e2, e3));
|
|
}
|
|
|
|
|
|
/*
|
|
* trinary evaluation functions with matrizes, xpr of and POD
|
|
*
|
|
* XprMatrix<E, Rows, Cols> ? POD1 : POD2
|
|
* XprMatrix<E1, Rows, Cols> ? POD : XprMatrix<E3, Rows, Cols>
|
|
* XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : POD
|
|
*/
|
|
#define TVMET_IMPLEMENT_MACRO(POD) \
|
|
template<class E, int Rows, int Cols> \
|
|
inline \
|
|
XprMatrix< \
|
|
XprEval< \
|
|
XprMatrix<E, Rows, Cols>, \
|
|
XprLiteral< POD >, \
|
|
XprLiteral< POD > \
|
|
>, \
|
|
Rows, Cols \
|
|
> \
|
|
eval(const XprMatrix<E, Rows, Cols>& e, POD x2, POD x3) { \
|
|
typedef XprEval< \
|
|
XprMatrix<E, Rows, Cols>, \
|
|
XprLiteral< POD >, \
|
|
XprLiteral< POD > \
|
|
> expr_type; \
|
|
return XprMatrix<expr_type, Rows, Cols>( \
|
|
expr_type(e, XprLiteral< POD >(x2), XprLiteral< POD >(x3))); \
|
|
} \
|
|
\
|
|
template<class E1, class E3, int Rows, int Cols> \
|
|
inline \
|
|
XprMatrix< \
|
|
XprEval< \
|
|
XprMatrix<E1, Rows, Cols>, \
|
|
XprLiteral< POD >, \
|
|
XprMatrix<E3, Rows, Cols> \
|
|
>, \
|
|
Rows, Cols \
|
|
> \
|
|
eval(const XprMatrix<E1, Rows, Cols>& e1, POD x2, const XprMatrix<E3, Rows, Cols>& e3) { \
|
|
typedef XprEval< \
|
|
XprMatrix<E1, Rows, Cols>, \
|
|
XprLiteral< POD >, \
|
|
XprMatrix<E3, Rows, Cols> \
|
|
> expr_type; \
|
|
return XprMatrix<expr_type, Rows, Cols>( \
|
|
expr_type(e1, XprLiteral< POD >(x2), e3)); \
|
|
} \
|
|
\
|
|
template<class E1, class E2, int Rows, int Cols> \
|
|
inline \
|
|
XprMatrix< \
|
|
XprEval< \
|
|
XprMatrix<E1, Rows, Cols>, \
|
|
XprMatrix<E2, Rows, Cols>, \
|
|
XprLiteral< POD > \
|
|
>, \
|
|
Rows, Cols \
|
|
> \
|
|
eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, POD x3) { \
|
|
typedef XprEval< \
|
|
XprMatrix<E1, Rows, Cols>, \
|
|
XprMatrix<E2, Rows, Cols>, \
|
|
XprLiteral< POD > \
|
|
> expr_type; \
|
|
return XprMatrix<expr_type, Rows, Cols>( \
|
|
expr_type(e1, e2, XprLiteral< POD >(x3))); \
|
|
}
|
|
|
|
TVMET_IMPLEMENT_MACRO(int)
|
|
|
|
TVMET_IMPLEMENT_MACRO(float)
|
|
TVMET_IMPLEMENT_MACRO(double)
|
|
|
|
#undef TVMET_IMPLEMENT_MACRO
|
|
|
|
|
|
/*
|
|
* trinary evaluation functions with matrizes, xpr of and complex<> types
|
|
*
|
|
* XprMatrix<E, Rows, Cols> e, std::complex<T> z2, std::complex<T> z3
|
|
* XprMatrix<E1, Rows, Cols> e1, std::complex<T> z2, XprMatrix<E3, Rows, Cols> e3
|
|
* XprMatrix<E1, Rows, Cols> e1, XprMatrix<E2, Rows, Cols> e2, std::complex<T> z3
|
|
*/
|
|
#if defined(EIGEN_USE_COMPLEX)
|
|
|
|
/**
|
|
* \fn eval(const XprMatrix<E, Rows, Cols>& e, const std::complex<T>& x2, const std::complex<T>& x3)
|
|
* \brief Evals the matrix expressions.
|
|
* \ingroup _trinary_function
|
|
* This eval is for the a?b:c syntax, since it's not allowed to overload
|
|
* these operators.
|
|
*/
|
|
template<class E, int Rows, int Cols, class T>
|
|
inline
|
|
XprMatrix<
|
|
XprEval<
|
|
XprMatrix<E, Rows, Cols>,
|
|
XprLiteral< std::complex<T> >,
|
|
XprLiteral< std::complex<T> >
|
|
>,
|
|
Rows, Cols
|
|
>
|
|
eval(const XprMatrix<E, Rows, Cols>& e, const std::complex<T>& x2, const std::complex<T>& x3) {
|
|
typedef XprEval<
|
|
XprMatrix<E, Rows, Cols>,
|
|
XprLiteral< std::complex<T> >,
|
|
XprLiteral< std::complex<T> >
|
|
> expr_type;
|
|
return XprMatrix<expr_type, Rows, Cols>(
|
|
expr_type(e, XprLiteral< std::complex<T> >(x2), XprLiteral< std::complex<T> >(x3)));
|
|
}
|
|
|
|
|
|
/**
|
|
* \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const std::complex<T>& x2, const XprMatrix<E3, Rows, Cols>& e3)
|
|
* \brief Evals the matrix expressions.
|
|
* \ingroup _trinary_function
|
|
* This eval is for the a?b:c syntax, since it's not allowed to overload
|
|
* these operators.
|
|
*/
|
|
template<class E1, class E3, int Rows, int Cols, class T>
|
|
inline
|
|
XprMatrix<
|
|
XprEval<
|
|
XprMatrix<E1, Rows, Cols>,
|
|
XprLiteral< std::complex<T> >,
|
|
XprMatrix<E3, Rows, Cols>
|
|
>,
|
|
Rows, Cols
|
|
>
|
|
eval(const XprMatrix<E1, Rows, Cols>& e1, const std::complex<T>& x2, const XprMatrix<E3, Rows, Cols>& e3) {
|
|
typedef XprEval<
|
|
XprMatrix<E1, Rows, Cols>,
|
|
XprLiteral< std::complex<T> >,
|
|
XprMatrix<E3, Rows, Cols>
|
|
> expr_type;
|
|
return XprMatrix<expr_type, Rows, Cols>(
|
|
expr_type(e1, XprLiteral< std::complex<T> >(x2), e3));
|
|
}
|
|
|
|
|
|
/**
|
|
* \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const std::complex<T>& x3)
|
|
* \brief Evals the matrix expressions.
|
|
* \ingroup _trinary_function
|
|
* This eval is for the a?b:c syntax, since it's not allowed to overload
|
|
* these operators.
|
|
*/
|
|
template<class E1, class E2, int Rows, int Cols, class T>
|
|
inline
|
|
XprMatrix<
|
|
XprEval<
|
|
XprMatrix<E1, Rows, Cols>,
|
|
XprMatrix<E2, Rows, Cols>,
|
|
XprLiteral< std::complex<T> >
|
|
>,
|
|
Rows, Cols
|
|
>
|
|
eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const std::complex<T>& x3) {
|
|
typedef XprEval<
|
|
XprMatrix<E1, Rows, Cols>,
|
|
XprMatrix<E2, Rows, Cols>,
|
|
XprLiteral< std::complex<T> >
|
|
> expr_type;
|
|
return XprMatrix<expr_type, Rows, Cols>(
|
|
expr_type(e1, e2, XprLiteral< std::complex<T> >(x3)));
|
|
}
|
|
#endif // defined(EIGEN_USE_COMPLEX)
|
|
|
|
|
|
} // namespace tvmet
|
|
|
|
#endif // TVMET_MATRIX_EVAL_H
|
|
|
|
// Local Variables:
|
|
// mode:C++
|
|
// End:
|