eigen/tvmet-1.7.1/include/tvmet/MatrixEval.h
Benoit Jacob 37bd64b496 Remove remaining per-element math functions. Remove defines for IEEE, SYSV and complex
math. Now the user has to define himself EIGEN_USE_COMPLEX if he wants complex support.
Remove TVMET_OPTIMIZE. More cleanup.
2007-06-18 07:01:42 +00:00

379 lines
11 KiB
C++

/*
* Tiny Vector Matrix Library
* Dense Vector Matrix Libary of Tiny size using Expression Templates
*
* Copyright (C) 2001 - 2003 Olaf Petzold <opetzold@users.sourceforge.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* lesser General Public License for more details.
*
* You should have received a copy of the GNU lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id: MatrixEval.h,v 1.14 2004/06/10 16:36:55 opetzold Exp $
*/
#ifndef TVMET_MATRIX_EVAL_H
#define TVMET_MATRIX_EVAL_H
namespace tvmet {
/**
* \fn bool all_elements(const XprMatrix<E, Rows, Cols>& e)
* \brief check on statements for all elements
* \ingroup _unary_function
* This is for use with boolean operators like
* \par Example:
* \code
* all_elements(matrix > 0) {
* // true branch
* } else {
* // false branch
* }
* \endcode
* \sa \ref compare
*/
template<class E, int Rows, int Cols>
inline
bool all_elements(const XprMatrix<E, Rows, Cols>& e) {
return meta::Matrix<Rows, Cols, 0, 0>::all_elements(e);
}
/**
* \fn bool any_elements(const XprMatrix<E, Rows, Cols>& e)
* \brief check on statements for any elements
* \ingroup _unary_function
* This is for use with boolean operators like
* \par Example:
* \code
* any_elements(matrix > 0) {
* // true branch
* } else {
* // false branch
* }
* \endcode
* \sa \ref compare
*/
template<class E, int Rows, int Cols>
inline
bool any_elements(const XprMatrix<E, Rows, Cols>& e) {
return meta::Matrix<Rows, Cols, 0, 0>::any_elements(e);
}
/*
* trinary evaluation functions with matrizes and xpr of
*
* XprMatrix<E1, Rows, Cols> ? Matrix<T2, Rows, Cols> : Matrix<T3, Rows, Cols>
* XprMatrix<E1, Rows, Cols> ? Matrix<T2, Rows, Cols> : XprMatrix<E3, Rows, Cols>
* XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : Matrix<T3, Rows, Cols>
* XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : XprMatrix<E3, Rows, Cols>
*/
/**
* \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const Matrix<T2, Rows, Cols>& m2, const Matrix<T3, Rows, Cols>& m3)
* \brief Evals the matrix expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E1, class T2, class T3, int Rows, int Cols>
inline
XprMatrix<
XprEval<
XprMatrix<E1, Rows, Cols>,
MatrixConstReference<T2, Rows, Cols>,
MatrixConstReference<T3, Rows, Cols>
>,
Rows, Cols
>
eval(const XprMatrix<E1, Rows, Cols>& e1,
const Matrix<T2, Rows, Cols>& m2,
const Matrix<T3, Rows, Cols>& m3) {
typedef XprEval<
XprMatrix<E1, Rows, Cols>,
MatrixConstReference<T2, Rows, Cols>,
MatrixConstReference<T3, Rows, Cols>
> expr_type;
return XprMatrix<expr_type, Rows, Cols>(
expr_type(e1, m2.const_ref(), m3.const_ref()));
}
/**
* \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const Matrix<T2, Rows, Cols>& m2, const XprMatrix<E3, Rows, Cols>& e3)
* \brief Evals the matrix expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E1, class T2, class E3, int Rows, int Cols>
inline
XprMatrix<
XprEval<
XprMatrix<E1, Rows, Cols>,
MatrixConstReference<T2, Rows, Cols>,
XprMatrix<E3, Rows, Cols>
>,
Rows, Cols
>
eval(const XprMatrix<E1, Rows, Cols>& e1,
const Matrix<T2, Rows, Cols>& m2,
const XprMatrix<E3, Rows, Cols>& e3) {
typedef XprEval<
XprMatrix<E1, Rows, Cols>,
MatrixConstReference<T2, Rows, Cols>,
XprMatrix<E3, Rows, Cols>
> expr_type;
return XprMatrix<expr_type, Rows, Cols>(
expr_type(e1, m2.const_ref(), e3));
}
/**
* \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const Matrix<T3, Rows, Cols>& m3)
* \brief Evals the matrix expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E1, class E2, class T3, int Rows, int Cols>
inline
XprMatrix<
XprEval<
XprMatrix<E1, Rows, Cols>,
XprMatrix<E2, Rows, Cols>,
MatrixConstReference<T3, Rows, Cols>
>,
Rows, Cols
>
eval(const XprMatrix<E1, Rows, Cols>& e1,
const XprMatrix<E2, Rows, Cols>& e2,
const Matrix<T3, Rows, Cols>& m3) {
typedef XprEval<
XprMatrix<E1, Rows, Cols>,
XprMatrix<E2, Rows, Cols>,
MatrixConstReference<T3, Rows, Cols>
> expr_type;
return XprMatrix<expr_type, Rows, Cols>(
expr_type(e1, e2, m3.const_ref()));
}
/**
* \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const XprMatrix<E3, Rows, Cols>& e3)
* \brief Evals the matrix expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E1, class E2, class E3, int Rows, int Cols>
inline
XprMatrix<
XprEval<
XprMatrix<E1, Rows, Cols>,
XprMatrix<E2, Rows, Cols>,
XprMatrix<E3, Rows, Cols>
>,
Rows, Cols
>
eval(const XprMatrix<E1, Rows, Cols>& e1,
const XprMatrix<E2, Rows, Cols>& e2,
const XprMatrix<E3, Rows, Cols>& e3) {
typedef XprEval<
XprMatrix<E1, Rows, Cols>,
XprMatrix<E2, Rows, Cols>,
XprMatrix<E3, Rows, Cols>
> expr_type;
return XprMatrix<expr_type, Rows, Cols>(expr_type(e1, e2, e3));
}
/*
* trinary evaluation functions with matrizes, xpr of and POD
*
* XprMatrix<E, Rows, Cols> ? POD1 : POD2
* XprMatrix<E1, Rows, Cols> ? POD : XprMatrix<E3, Rows, Cols>
* XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : POD
*/
#define TVMET_IMPLEMENT_MACRO(POD) \
template<class E, int Rows, int Cols> \
inline \
XprMatrix< \
XprEval< \
XprMatrix<E, Rows, Cols>, \
XprLiteral< POD >, \
XprLiteral< POD > \
>, \
Rows, Cols \
> \
eval(const XprMatrix<E, Rows, Cols>& e, POD x2, POD x3) { \
typedef XprEval< \
XprMatrix<E, Rows, Cols>, \
XprLiteral< POD >, \
XprLiteral< POD > \
> expr_type; \
return XprMatrix<expr_type, Rows, Cols>( \
expr_type(e, XprLiteral< POD >(x2), XprLiteral< POD >(x3))); \
} \
\
template<class E1, class E3, int Rows, int Cols> \
inline \
XprMatrix< \
XprEval< \
XprMatrix<E1, Rows, Cols>, \
XprLiteral< POD >, \
XprMatrix<E3, Rows, Cols> \
>, \
Rows, Cols \
> \
eval(const XprMatrix<E1, Rows, Cols>& e1, POD x2, const XprMatrix<E3, Rows, Cols>& e3) { \
typedef XprEval< \
XprMatrix<E1, Rows, Cols>, \
XprLiteral< POD >, \
XprMatrix<E3, Rows, Cols> \
> expr_type; \
return XprMatrix<expr_type, Rows, Cols>( \
expr_type(e1, XprLiteral< POD >(x2), e3)); \
} \
\
template<class E1, class E2, int Rows, int Cols> \
inline \
XprMatrix< \
XprEval< \
XprMatrix<E1, Rows, Cols>, \
XprMatrix<E2, Rows, Cols>, \
XprLiteral< POD > \
>, \
Rows, Cols \
> \
eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, POD x3) { \
typedef XprEval< \
XprMatrix<E1, Rows, Cols>, \
XprMatrix<E2, Rows, Cols>, \
XprLiteral< POD > \
> expr_type; \
return XprMatrix<expr_type, Rows, Cols>( \
expr_type(e1, e2, XprLiteral< POD >(x3))); \
}
TVMET_IMPLEMENT_MACRO(int)
TVMET_IMPLEMENT_MACRO(float)
TVMET_IMPLEMENT_MACRO(double)
#undef TVMET_IMPLEMENT_MACRO
/*
* trinary evaluation functions with matrizes, xpr of and complex<> types
*
* XprMatrix<E, Rows, Cols> e, std::complex<T> z2, std::complex<T> z3
* XprMatrix<E1, Rows, Cols> e1, std::complex<T> z2, XprMatrix<E3, Rows, Cols> e3
* XprMatrix<E1, Rows, Cols> e1, XprMatrix<E2, Rows, Cols> e2, std::complex<T> z3
*/
#if defined(EIGEN_USE_COMPLEX)
/**
* \fn eval(const XprMatrix<E, Rows, Cols>& e, const std::complex<T>& x2, const std::complex<T>& x3)
* \brief Evals the matrix expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E, int Rows, int Cols, class T>
inline
XprMatrix<
XprEval<
XprMatrix<E, Rows, Cols>,
XprLiteral< std::complex<T> >,
XprLiteral< std::complex<T> >
>,
Rows, Cols
>
eval(const XprMatrix<E, Rows, Cols>& e, const std::complex<T>& x2, const std::complex<T>& x3) {
typedef XprEval<
XprMatrix<E, Rows, Cols>,
XprLiteral< std::complex<T> >,
XprLiteral< std::complex<T> >
> expr_type;
return XprMatrix<expr_type, Rows, Cols>(
expr_type(e, XprLiteral< std::complex<T> >(x2), XprLiteral< std::complex<T> >(x3)));
}
/**
* \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const std::complex<T>& x2, const XprMatrix<E3, Rows, Cols>& e3)
* \brief Evals the matrix expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E1, class E3, int Rows, int Cols, class T>
inline
XprMatrix<
XprEval<
XprMatrix<E1, Rows, Cols>,
XprLiteral< std::complex<T> >,
XprMatrix<E3, Rows, Cols>
>,
Rows, Cols
>
eval(const XprMatrix<E1, Rows, Cols>& e1, const std::complex<T>& x2, const XprMatrix<E3, Rows, Cols>& e3) {
typedef XprEval<
XprMatrix<E1, Rows, Cols>,
XprLiteral< std::complex<T> >,
XprMatrix<E3, Rows, Cols>
> expr_type;
return XprMatrix<expr_type, Rows, Cols>(
expr_type(e1, XprLiteral< std::complex<T> >(x2), e3));
}
/**
* \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const std::complex<T>& x3)
* \brief Evals the matrix expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E1, class E2, int Rows, int Cols, class T>
inline
XprMatrix<
XprEval<
XprMatrix<E1, Rows, Cols>,
XprMatrix<E2, Rows, Cols>,
XprLiteral< std::complex<T> >
>,
Rows, Cols
>
eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const std::complex<T>& x3) {
typedef XprEval<
XprMatrix<E1, Rows, Cols>,
XprMatrix<E2, Rows, Cols>,
XprLiteral< std::complex<T> >
> expr_type;
return XprMatrix<expr_type, Rows, Cols>(
expr_type(e1, e2, XprLiteral< std::complex<T> >(x3)));
}
#endif // defined(EIGEN_USE_COMPLEX)
} // namespace tvmet
#endif // TVMET_MATRIX_EVAL_H
// Local Variables:
// mode:C++
// End: