eigen/tvmet-1.7.1/include/tvmet/xpr/VectorFunctions.h

656 lines
18 KiB
C++

/*
* Tiny Vector Matrix Library
* Dense Vector Matrix Libary of Tiny size using Expression Templates
*
* Copyright (C) 2001 - 2003 Olaf Petzold <opetzold@users.sourceforge.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id: VectorFunctions.h,v 1.17 2005/03/25 07:11:29 opetzold Exp $
*/
#ifndef TVMET_XPR_VECTOR_FUNCTIONS_H
#define TVMET_XPR_VECTOR_FUNCTIONS_H
namespace tvmet {
/* forwards */
template<class T, int Sz> class Vector;
/*********************************************************
* PART I: DECLARATION
*********************************************************/
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* Vector arithmetic functions add, sub, mul and div
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/*
* function(XprVector<E1, Sz>, XprVector<E2, Sz>)
*/
#define TVMET_DECLARE_MACRO(NAME) \
template<class E1, class E2, int Sz> \
XprVector< \
XprBinOp< \
Fcnl_##NAME<typename E1::value_type, typename E2::value_type>, \
XprVector<E1, Sz>, \
XprVector<E2, Sz> \
>, \
Sz \
> \
NAME (const XprVector<E1, Sz>& lhs, \
const XprVector<E2, Sz>& rhs) _tvmet_always_inline;
TVMET_DECLARE_MACRO(add) // per se element wise
TVMET_DECLARE_MACRO(sub) // per se element wise
TVMET_DECLARE_MACRO(mul) // per se element wise
namespace element_wise {
TVMET_DECLARE_MACRO(div) // not defined for vectors
}
#undef TVMET_DECLARE_MACRO
/*
* function(XprVector<E, Sz>, POD)
* function(POD, XprVector<E, Sz>)
* Note: - operations +,-,*,/ are per se element wise
*/
#define TVMET_DECLARE_MACRO(NAME, POD) \
template<class E, int Sz> \
XprVector< \
XprBinOp< \
Fcnl_##NAME< typename E::value_type, POD >, \
XprVector<E, Sz>, \
XprLiteral< POD > \
>, \
Sz \
> \
NAME (const XprVector<E, Sz>& lhs, \
POD rhs) _tvmet_always_inline; \
\
template<class E, int Sz> \
XprVector< \
XprBinOp< \
Fcnl_##NAME< POD, typename E::value_type>, \
XprLiteral< POD >, \
XprVector<E, Sz> \
>, \
Sz \
> \
NAME (POD lhs, \
const XprVector<E, Sz>& rhs) _tvmet_always_inline;
TVMET_DECLARE_MACRO(add, int)
TVMET_DECLARE_MACRO(sub, int)
TVMET_DECLARE_MACRO(mul, int)
TVMET_DECLARE_MACRO(div, int)
TVMET_DECLARE_MACRO(add, float)
TVMET_DECLARE_MACRO(sub, float)
TVMET_DECLARE_MACRO(mul, float)
TVMET_DECLARE_MACRO(div, float)
TVMET_DECLARE_MACRO(add, double)
TVMET_DECLARE_MACRO(sub, double)
TVMET_DECLARE_MACRO(mul, double)
TVMET_DECLARE_MACRO(div, double)
#undef TVMET_DECLARE_MACRO
#if defined(EIGEN_USE_COMPLEX)
/*
* function(XprMatrix<E, Rows, Cols>, complex<T>)
* function(complex<T>, XprMatrix<E, Rows, Cols>)
* Note: - operations +,-,*,/ are per se element wise
* \todo type promotion
*/
#define TVMET_DECLARE_MACRO(NAME) \
template<class E, int Sz, class T> \
XprVector< \
XprBinOp< \
Fcnl_##NAME< typename E::value_type, std::complex<T> >, \
XprVector<E, Sz>, \
XprLiteral< std::complex<T> > \
>, \
Sz \
> \
NAME (const XprVector<E, Sz>& lhs, \
const std::complex<T>& rhs) _tvmet_always_inline; \
\
template<class E, int Sz, class T> \
XprVector< \
XprBinOp< \
Fcnl_##NAME< std::complex<T>, typename E::value_type>, \
XprLiteral< std::complex<T> >, \
XprVector<E, Sz> \
>, \
Sz \
> \
NAME (const std::complex<T>& lhs, \
const XprVector<E, Sz>& rhs) _tvmet_always_inline;
TVMET_DECLARE_MACRO(add)
TVMET_DECLARE_MACRO(sub)
TVMET_DECLARE_MACRO(mul)
TVMET_DECLARE_MACRO(div)
#undef TVMET_DECLARE_MACRO
#endif // defined(EIGEN_USE_COMPLEX)
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* vector specific functions
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
template<class E, int Sz>
typename Traits<typename E::value_type>::sum_type
sum(const XprVector<E, Sz>& v) _tvmet_always_inline;
template<class E, int Sz>
typename Traits<typename E::value_type>::sum_type
product(const XprVector<E, Sz>& v) _tvmet_always_inline;
template<class E1, class E2, int Sz>
typename PromoteTraits<
typename E1::value_type,
typename E2::value_type
>::value_type
dot(const XprVector<E1, Sz>& lhs,
const XprVector<E2, Sz>& rhs) _tvmet_always_inline;
template<class T, class E, int Sz>
typename PromoteTraits<T, typename E::value_type>::value_type
dot(const Vector<T, Sz>& lhs,
const XprVector<E, Sz>& rhs) _tvmet_always_inline;
template<class E, class T, int Sz>
typename PromoteTraits<T, typename E::value_type>::value_type
dot(const XprVector<E, Sz>& lhs,
const Vector<T, Sz>& rhs) _tvmet_always_inline;
template<class E1, class E2>
Vector<
typename PromoteTraits<
typename E1::value_type,
typename E2::value_type
>::value_type,
3
>
cross(const XprVector<E1, 3>& lhs,
const XprVector<E2, 3>& rhs) _tvmet_always_inline;
template<class T, class E>
Vector<
typename PromoteTraits<T, typename E::value_type>::value_type, 3>
cross(const Vector<T, 3>& lhs,
const XprVector<E, 3>& rhs) _tvmet_always_inline;
template<class E, class T>
Vector<
typename PromoteTraits<T, typename E::value_type>::value_type, 3>
cross(const XprVector<E, 3>& lhs,
const Vector<T, 3>& rhs) _tvmet_always_inline;
template<class E, int Sz>
typename Traits<typename E::value_type>::sum_type
norm1(const XprVector<E, Sz>& v) _tvmet_always_inline;
template<class E, int Sz>
typename Traits<typename E::value_type>::sum_type
norm2(const XprVector<E, Sz>& v) _tvmet_always_inline;
template<class E, int Sz>
XprVector<
XprBinOp<
Fcnl_div<typename E::value_type, typename E::value_type>,
XprVector<E, Sz>,
XprLiteral<typename E::value_type>
>,
Sz
>
normalize(const XprVector<E, Sz>& v) _tvmet_always_inline;
/*********************************************************
* PART II: IMPLEMENTATION
*********************************************************/
/*
* function(XprVector<E1, Sz>, XprVector<E2, Sz>)
*/
#define TVMET_IMPLEMENT_MACRO(NAME) \
template<class E1, class E2, int Sz> \
inline \
XprVector< \
XprBinOp< \
Fcnl_##NAME<typename E1::value_type, typename E2::value_type>, \
XprVector<E1, Sz>, \
XprVector<E2, Sz> \
>, \
Sz \
> \
NAME (const XprVector<E1, Sz>& lhs, const XprVector<E2, Sz>& rhs) { \
typedef XprBinOp< \
Fcnl_##NAME<typename E1::value_type, typename E2::value_type>, \
XprVector<E1, Sz>, \
XprVector<E2, Sz> \
> expr_type; \
return XprVector<expr_type, Sz>(expr_type(lhs, rhs)); \
}
TVMET_IMPLEMENT_MACRO(add) // per se element wise
TVMET_IMPLEMENT_MACRO(sub) // per se element wise
TVMET_IMPLEMENT_MACRO(mul) // per se element wise
namespace element_wise {
TVMET_IMPLEMENT_MACRO(div) // not defined for vectors
}
#undef TVMET_IMPLEMENT_MACRO
/*
* function(XprVector<E, Sz>, POD)
* function(POD, XprVector<E, Sz>)
* Note: - operations +,-,*,/ are per se element wise
*/
#define TVMET_IMPLEMENT_MACRO(NAME, POD) \
template<class E, int Sz> \
inline \
XprVector< \
XprBinOp< \
Fcnl_##NAME< typename E::value_type, POD >, \
XprVector<E, Sz>, \
XprLiteral< POD > \
>, \
Sz \
> \
NAME (const XprVector<E, Sz>& lhs, POD rhs) { \
typedef XprBinOp< \
Fcnl_##NAME< typename E::value_type, POD >, \
XprVector<E, Sz>, \
XprLiteral< POD > \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(lhs, XprLiteral< POD >(rhs))); \
} \
\
template<class E, int Sz> \
inline \
XprVector< \
XprBinOp< \
Fcnl_##NAME< POD, typename E::value_type>, \
XprLiteral< POD >, \
XprVector<E, Sz> \
>, \
Sz \
> \
NAME (POD lhs, const XprVector<E, Sz>& rhs) { \
typedef XprBinOp< \
Fcnl_##NAME< POD, typename E::value_type>, \
XprLiteral< POD >, \
XprVector<E, Sz> \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(XprLiteral< POD >(lhs), rhs)); \
}
TVMET_IMPLEMENT_MACRO(add, int)
TVMET_IMPLEMENT_MACRO(sub, int)
TVMET_IMPLEMENT_MACRO(mul, int)
TVMET_IMPLEMENT_MACRO(div, int)
TVMET_IMPLEMENT_MACRO(add, float)
TVMET_IMPLEMENT_MACRO(sub, float)
TVMET_IMPLEMENT_MACRO(mul, float)
TVMET_IMPLEMENT_MACRO(div, float)
TVMET_IMPLEMENT_MACRO(add, double)
TVMET_IMPLEMENT_MACRO(sub, double)
TVMET_IMPLEMENT_MACRO(mul, double)
TVMET_IMPLEMENT_MACRO(div, double)
#undef TVMET_IMPLEMENT_MACRO
#if defined(EIGEN_USE_COMPLEX)
/*
* function(XprMatrix<E, Rows, Cols>, complex<T>)
* function(complex<T>, XprMatrix<E, Rows, Cols>)
* Note: - operations +,-,*,/ are per se element wise
* \todo type promotion
*/
#define TVMET_IMPLEMENT_MACRO(NAME) \
template<class E, int Sz, class T> \
inline \
XprVector< \
XprBinOp< \
Fcnl_##NAME< typename E::value_type, std::complex<T> >, \
XprVector<E, Sz>, \
XprLiteral< std::complex<T> > \
>, \
Sz \
> \
NAME (const XprVector<E, Sz>& lhs, const std::complex<T>& rhs) { \
typedef XprBinOp< \
Fcnl_##NAME< typename E::value_type, std::complex<T> >, \
XprVector<E, Sz>, \
XprLiteral< std::complex<T> > \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(lhs, XprLiteral< std::complex<T> >(rhs))); \
} \
\
template<class E, int Sz, class T> \
inline \
XprVector< \
XprBinOp< \
Fcnl_##NAME< std::complex<T>, typename E::value_type>, \
XprLiteral< std::complex<T> >, \
XprVector<E, Sz> \
>, \
Sz \
> \
NAME (const std::complex<T>& lhs, const XprVector<E, Sz>& rhs) { \
typedef XprBinOp< \
Fcnl_##NAME< std::complex<T>, typename E::value_type>, \
XprLiteral< std::complex<T> >, \
XprVector<E, Sz> \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(XprLiteral< std::complex<T> >(lhs), rhs)); \
}
TVMET_IMPLEMENT_MACRO(add)
TVMET_IMPLEMENT_MACRO(sub)
TVMET_IMPLEMENT_MACRO(mul)
TVMET_IMPLEMENT_MACRO(div)
#undef TVMET_IMPLEMENT_MACRO
#endif // defined(EIGEN_USE_COMPLEX)
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* vector specific functions
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/**
* \fn sum(const XprVector<E, Sz>& v)
* \brief Compute the sum of the vector expression.
* \ingroup _unary_function
*
* Simply compute the sum of the given vector as:
* \f[
* \sum_{i = 0}^{Sz-1} v[i]
* \f]
*/
template<class E, int Sz>
inline
typename Traits<typename E::value_type>::sum_type
sum(const XprVector<E, Sz>& v) {
return meta::Vector<Sz>::sum(v);
}
/**
* \fn product(const XprVector<E, Sz>& v)
* \brief Compute the product of the vector elements.
* \ingroup _unary_function
*
* Simply computer the product of the given vector expression as:
* \f[
* \prod_{i = 0}^{Sz - 1} v[i]
* \f]
*/
template<class E, int Sz>
inline
typename Traits<typename E::value_type>::sum_type
product(const XprVector<E, Sz>& v) {
return meta::Vector<Sz>::product(v);
}
/**
* \fn dot(const XprVector<E1, Sz>& lhs, const XprVector<E2, Sz>& rhs)
* \brief Compute the dot/inner product
* \ingroup _binary_function
*
* Compute the dot product as:
* \f[
* \sum_{i = 0}^{Sz - 1} ( lhs[i] * rhs[i] )
* \f]
* where lhs is a column vector and rhs is a row vector, both vectors
* have the same dimension.
*/
template<class E1, class E2, int Sz>
inline
typename PromoteTraits<
typename E1::value_type,
typename E2::value_type
>::value_type
dot(const XprVector<E1, Sz>& lhs, const XprVector<E2, Sz>& rhs) {
return meta::Vector<Sz>::dot(lhs, rhs);
}
/**
* \fn dot(const Vector<T, Sz>& lhs, const XprVector<E, Sz>& rhs)
* \brief Compute the dot/inner product
* \ingroup _binary_function
*
* Compute the dot product as:
* \f[
* \sum_{i = 0}^{Sz - 1} ( lhs[i] * rhs[i] )
* \f]
* where lhs is a column vector and rhs is a row vector, both vectors
* have the same dimension.
*/
template<class T, class E, int Sz>
inline
typename PromoteTraits<T, typename E::value_type>::value_type
dot(const Vector<T, Sz>& lhs, const XprVector<E, Sz>& rhs) {
return meta::Vector<Sz>::dot(lhs, rhs);
}
/**
* \fn dot(const XprVector<E, Sz>& lhs, const Vector<T, Sz>& rhs)
* \brief Compute the dot/inner product
* \ingroup _binary_function
*
* Compute the dot product as:
* \f[
* \sum_{i = 0}^{Sz - 1} ( lhs[i] * rhs[i] )
* \f]
* where lhs is a column vector and rhs is a row vector, both vectors
* have the same dimension.
*/
template<class E, class T, int Sz>
inline
typename PromoteTraits<T, typename E::value_type>::value_type
dot(const XprVector<E, Sz>& lhs, const Vector<T, Sz>& rhs) {
return meta::Vector<Sz>::dot(lhs, rhs);
}
/**
* \fn cross(const XprVector<E1, 3>& lhs, const XprVector<E2, 3>& rhs)
* \brief Compute the cross/outer product
* \ingroup _binary_function
* \note working only for vectors of size = 3
* \todo Implement vector outer product as ET and MT, returning a XprVector
*/
template<class E1, class E2>
inline
Vector<
typename PromoteTraits<
typename E1::value_type,
typename E2::value_type
>::value_type,
3
>
cross(const XprVector<E1, 3>& lhs, const XprVector<E2, 3>& rhs) {
typedef typename PromoteTraits<
typename E1::value_type,
typename E2::value_type
>::value_type value_type;
return Vector<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2),
rhs(0)*lhs(2) - lhs(0)*rhs(2),
lhs(0)*rhs(1) - rhs(0)*lhs(1));
}
/**
* \fn cross(const XprVector<E, 3>& lhs, const Vector<T, 3>& rhs)
* \brief Compute the cross/outer product
* \ingroup _binary_function
* \note working only for vectors of size = 3
* \todo Implement vector outer product as ET and MT, returning a XprVector
*/
template<class E, class T>
inline
Vector<
typename PromoteTraits<T, typename E::value_type>::value_type, 3>
cross(const XprVector<E, 3>& lhs, const Vector<T, 3>& rhs) {
typedef typename PromoteTraits<
typename E::value_type, T>::value_type value_type;
return Vector<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2),
rhs(0)*lhs(2) - lhs(0)*rhs(2),
lhs(0)*rhs(1) - rhs(0)*lhs(1));
}
/**
* \fn cross(const Vector<T, 3>& lhs, const XprVector<E, 3>& rhs)
* \brief Compute the cross/outer product
* \ingroup _binary_function
* \note working only for vectors of size = 3
* \todo Implement vector outer product as ET and MT, returning a XprVector
*/
template<class T1, class E2>
inline
Vector<
typename PromoteTraits<T1, typename E2::value_type>::value_type, 3>
cross(const Vector<T1, 3>& lhs, const XprVector<E2, 3>& rhs) {
typedef typename PromoteTraits<
typename E2::value_type, T1>::value_type value_type;
return Vector<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2),
rhs(0)*lhs(2) - lhs(0)*rhs(2),
lhs(0)*rhs(1) - rhs(0)*lhs(1));
}
/**
* \fn norm1(const XprVector<E, Sz>& v)
* \brief The \f$l_1\f$ norm of a vector expression.
* \ingroup _unary_function
* The norm of any vector is just the square root of the dot product of
* a vector with itself, or
*
* \f[
* |Vector<T, Sz> v| = |v| = \sum_{i=0}^{Sz-1}\,|v[i]|
* \f]
*/
template<class E, int Sz>
inline
typename Traits<typename E::value_type>::sum_type
norm1(const XprVector<E, Sz>& v) {
return sum(abs(v));
}
/**
* \fn norm2(const XprVector<E, Sz>& v)
* \brief The euklidian norm (or \f$l_2\f$ norm) of a vector expression.
* \ingroup _unary_function
* The norm of any vector is just the square root of the dot product of
* a vector with itself, or
*
* \f[
* |Vector<T, Sz> v| = |v| = \sqrt{ \sum_{i=0}^{Sz-1}\,v[i]^2 }
* \f]
*
* \note The internal cast for Vector<int> avoids warnings on sqrt.
*/
template<class E, int Sz>
inline
typename Traits<typename E::value_type>::sum_type
norm2(const XprVector<E, Sz>& v) {
typedef typename E::value_type value_type;
return static_cast<value_type>( std::sqrt(static_cast<value_type>(dot(v, v))) );
}
/**
* \fn normalize(const XprVector<E, Sz>& v)
* \brief Normalize the given vector expression.
* \ingroup _unary_function
* \sa norm2
*
* using the equation:
* \f[
* \frac{Vector<T, Sz> v}{\sqrt{ \sum_{i=0}^{Sz-1}\,v[i]^2 }}
* \f]
*/
template<class E, int Sz>
inline
XprVector<
XprBinOp<
Fcnl_div<typename E::value_type, typename E::value_type>,
XprVector<E, Sz>,
XprLiteral<typename E::value_type>
>,
Sz
>
normalize(const XprVector<E, Sz>& v) {
typedef typename E::value_type value_type;
typedef XprBinOp<
Fcnl_div<value_type, value_type>,
XprVector<E, Sz>,
XprLiteral<value_type>
> expr_type;
return XprVector<expr_type, Sz>(
expr_type(v, XprLiteral< value_type >(norm2(v))));
}
} // namespace tvmet
#endif // TVMET_XPR_VECTOR_FUNCTIONS_H
// Local Variables:
// mode:C++
// End: