eigen/tvmet-1.7.1/include/tvmet/VectorFunctions.h
Benoit Jacob ad89fc8295 -- switch Matrix class to column-major order like in Eigen
-- many more Eigenification changes, in preparation of the big merge
-- big changes in the Comma Initializer to allow for column-major order,
   leading to a simpler and cleaner solution. "commaWrite" hook added to
   the classes using the Comma Initializer.
-- lots of API improvements, cleanup, removal of dead/useless stuff
-- testsuite updated
2007-08-17 07:10:44 +00:00

855 lines
21 KiB
C++

/*
* Tiny Vector Matrix Library
* Dense Vector Matrix Libary of Tiny size using Expression Templates
*
* Copyright (C) 2001 - 2003 Olaf Petzold <opetzold@users.sourceforge.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id: VectorFunctions.h,v 1.32 2004/07/06 09:45:54 opetzold Exp $
*/
#ifndef TVMET_VECTOR_FUNCTIONS_H
#define TVMET_VECTOR_FUNCTIONS_H
#include <tvmet/Extremum.h>
namespace tvmet {
/*********************************************************
* PART I: DECLARATION
*********************************************************/
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* Vector arithmetic functions add, sub, mul and div
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/*
* function(Vector<T1, Sz>, Vector<T2, Sz>)
* function(Vector<T, Sz>, XprVector<E, Sz>)
* function(XprVector<E, Sz>, Vector<T, Sz>)
*/
#define TVMET_DECLARE_MACRO(NAME) \
template<class T1, class T2, int Sz> \
XprVector< \
XprBinOp< \
Fcnl_##NAME<T1, T2>, \
VectorConstRef<T1, Sz>, \
VectorConstRef<T2, Sz> \
>, \
Sz \
> \
NAME (const Vector<T1, Sz>& lhs, \
const Vector<T2, Sz>& rhs) _tvmet_always_inline; \
\
template<class E, class T, int Sz> \
XprVector< \
XprBinOp< \
Fcnl_##NAME<typename E::value_type, T>, \
XprVector<E, Sz>, \
VectorConstRef<T, Sz> \
>, \
Sz \
> \
NAME (const XprVector<E, Sz>& lhs, \
const Vector<T, Sz>& rhs) _tvmet_always_inline; \
\
template<class E, class T, int Sz> \
XprVector< \
XprBinOp< \
Fcnl_##NAME<T, typename E::value_type>, \
VectorConstRef<T, Sz>, \
XprVector<E, Sz> \
>, \
Sz \
> \
NAME (const Vector<T, Sz>& lhs, \
const XprVector<E, Sz>& rhs) _tvmet_always_inline;
TVMET_DECLARE_MACRO(add) // per se element wise
TVMET_DECLARE_MACRO(sub) // per se element wise
TVMET_DECLARE_MACRO(mul) // per se element wise
namespace element_wise {
TVMET_DECLARE_MACRO(div) // not defined for vectors
}
#undef TVMET_DECLARE_MACRO
/*
* function(Vector<T, Sz>, POD)
* function(POD, Vector<T, Sz>)
* Note: - operations +,-,*,/ are per se element wise
*/
#define TVMET_DECLARE_MACRO(NAME, POD) \
template<class T, int Sz> \
XprVector< \
XprBinOp< \
Fcnl_##NAME< T, POD >, \
VectorConstRef<T, Sz>, \
XprLiteral< POD > \
>, \
Sz \
> \
NAME (const Vector<T, Sz>& lhs, \
POD rhs) _tvmet_always_inline; \
\
template<class T, int Sz> \
XprVector< \
XprBinOp< \
Fcnl_##NAME< POD, T>, \
XprLiteral< POD >, \
VectorConstRef<T, Sz> \
>, \
Sz \
> \
NAME (POD lhs, \
const Vector<T, Sz>& rhs) _tvmet_always_inline;
TVMET_DECLARE_MACRO(add, int)
TVMET_DECLARE_MACRO(sub, int)
TVMET_DECLARE_MACRO(mul, int)
TVMET_DECLARE_MACRO(div, int)
TVMET_DECLARE_MACRO(add, float)
TVMET_DECLARE_MACRO(sub, float)
TVMET_DECLARE_MACRO(mul, float)
TVMET_DECLARE_MACRO(div, float)
TVMET_DECLARE_MACRO(add, double)
TVMET_DECLARE_MACRO(sub, double)
TVMET_DECLARE_MACRO(mul, double)
TVMET_DECLARE_MACRO(div, double)
#undef TVMET_DECLARE_MACRO
#if defined(EIGEN_USE_COMPLEX)
/*
* function(Vector<std::complex<T>, Sz>, std::complex<T>)
* function(std::complex<T>, Vector<std::complex<T>, Sz>)
* Note: per se element wise
* \todo type promotion
*/
#define TVMET_DECLARE_MACRO(NAME) \
template<class T, int Sz> \
XprVector< \
XprBinOp< \
Fcnl_##NAME< std::complex<T>, std::complex<T> >, \
VectorConstRef< std::complex<T>, Sz>, \
XprLiteral< std::complex<T> > \
>, \
Sz \
> \
NAME (const Vector<std::complex<T>, Sz>& lhs, \
const std::complex<T>& rhs) _tvmet_always_inline; \
\
template<class T, int Sz> \
XprVector< \
XprBinOp< \
Fcnl_##NAME< std::complex<T>, std::complex<T> >, \
XprLiteral< std::complex<T> >, \
VectorConstRef< std::complex<T>, Sz> \
>, \
Sz \
> \
NAME (const std::complex<T>& lhs, \
const Vector< std::complex<T>, Sz>& rhs) _tvmet_always_inline;
TVMET_DECLARE_MACRO(add)
TVMET_DECLARE_MACRO(sub)
TVMET_DECLARE_MACRO(mul)
TVMET_DECLARE_MACRO(div)
#undef TVMET_DECLARE_MACRO
#endif // defined(EIGEN_USE_COMPLEX)
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* vector specific functions
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
template<class T, int Sz>
typename Traits<T>::sum_type
sum(const Vector<T, Sz>& v) _tvmet_always_inline;
template<class T, int Sz>
typename Traits<T>::sum_type
product(const Vector<T, Sz>& v) _tvmet_always_inline;
template<class T1, class T2, int Sz>
typename PromoteTraits<T1, T2>::value_type
dot(const Vector<T1, Sz>& lhs,
const Vector<T2, Sz>& rhs) _tvmet_always_inline;
template<class T1, class T2>
Vector<typename PromoteTraits<T1, T2>::value_type, 3>
cross(const Vector<T1, 3>& lhs,
const Vector<T2, 3>& rhs) _tvmet_always_inline;
template<class T, int Sz>
typename Traits<T>::sum_type
norm1(const Vector<T, Sz>& v) _tvmet_always_inline;
template<class T, int Sz>
typename Traits<T>::sum_type
norm2(const Vector<T, Sz>& v) _tvmet_always_inline;
template<class T, int Sz>
XprVector<
XprBinOp<
Fcnl_div<T, T>,
VectorConstRef<T, Sz>,
XprLiteral< T >
>,
Sz
>
normalize(const Vector<T, Sz>& v) _tvmet_always_inline;
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* min/max unary functions
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
template<class E, int Sz>
Extremum<typename E::value_type, int, vector_tag>
maximum(const XprVector<E, Sz>& e); // NOT _tvmet_always_inline;
template<class T, int Sz>
Extremum<T, int, vector_tag>
maximum(const Vector<T, Sz>& v) _tvmet_always_inline;
template<class E, int Sz>
Extremum<typename E::value_type, int, vector_tag>
minimum(const XprVector<E, Sz>& e); // NOT _tvmet_always_inline;
template<class T, int Sz>
Extremum<T, int, vector_tag>
minimum(const Vector<T, Sz>& v) _tvmet_always_inline;
template<class E, int Sz>
typename E::value_type
max(const XprVector<E, Sz>& e); // NOT _tvmet_always_inline;
template<class T, int Sz>
T max(const Vector<T, Sz>& v) _tvmet_always_inline;
template<class E, int Sz>
typename E::value_type
min(const XprVector<E, Sz>& e); // NOT _tvmet_always_inline;
template<class T, int Sz>
T min(const Vector<T, Sz>& v) _tvmet_always_inline;
template<class T, int Sz>
XprVector<
VectorConstRef<T, Sz>,
Sz
>
cvector_ref(const T* mem) _tvmet_always_inline;
/*********************************************************
* PART II: IMPLEMENTATION
*********************************************************/
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* Vector arithmetic functions add, sub, mul and div
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/*
* function(Vector<T1, Sz>, Vector<T2, Sz>)
* function(Vector<T, Sz>, XprVector<E, Sz>)
* function(XprVector<E, Sz>, Vector<T, Sz>)
*/
#define TVMET_IMPLEMENT_MACRO(NAME) \
template<class T1, class T2, int Sz> \
inline \
XprVector< \
XprBinOp< \
Fcnl_##NAME<T1, T2>, \
VectorConstRef<T1, Sz>, \
VectorConstRef<T2, Sz> \
>, \
Sz \
> \
NAME (const Vector<T1, Sz>& lhs, const Vector<T2, Sz>& rhs) { \
typedef XprBinOp < \
Fcnl_##NAME<T1, T2>, \
VectorConstRef<T1, Sz>, \
VectorConstRef<T2, Sz> \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(lhs.constRef(), rhs.constRef())); \
} \
\
template<class E, class T, int Sz> \
inline \
XprVector< \
XprBinOp< \
Fcnl_##NAME<typename E::value_type, T>, \
XprVector<E, Sz>, \
VectorConstRef<T, Sz> \
>, \
Sz \
> \
NAME (const XprVector<E, Sz>& lhs, const Vector<T, Sz>& rhs) { \
typedef XprBinOp< \
Fcnl_##NAME<typename E::value_type, T>, \
XprVector<E, Sz>, \
VectorConstRef<T, Sz> \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(lhs, rhs.constRef())); \
} \
\
template<class E, class T, int Sz> \
inline \
XprVector< \
XprBinOp< \
Fcnl_##NAME<T, typename E::value_type>, \
VectorConstRef<T, Sz>, \
XprVector<E, Sz> \
>, \
Sz \
> \
NAME (const Vector<T, Sz>& lhs, const XprVector<E, Sz>& rhs) { \
typedef XprBinOp< \
Fcnl_##NAME<T, typename E::value_type>, \
VectorConstRef<T, Sz>, \
XprVector<E, Sz> \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(lhs.constRef(), rhs)); \
}
TVMET_IMPLEMENT_MACRO(add) // per se element wise
TVMET_IMPLEMENT_MACRO(sub) // per se element wise
TVMET_IMPLEMENT_MACRO(mul) // per se element wise
namespace element_wise {
TVMET_IMPLEMENT_MACRO(div) // not defined for vectors
}
#undef TVMET_IMPLEMENT_MACRO
/*
* function(Vector<T, Sz>, POD)
* function(POD, Vector<T, Sz>)
* Note: - operations +,-,*,/ are per se element wise
*/
#define TVMET_IMPLEMENT_MACRO(NAME, POD) \
template<class T, int Sz> \
inline \
XprVector< \
XprBinOp< \
Fcnl_##NAME< T, POD >, \
VectorConstRef<T, Sz>, \
XprLiteral< POD > \
>, \
Sz \
> \
NAME (const Vector<T, Sz>& lhs, POD rhs) { \
typedef XprBinOp< \
Fcnl_##NAME<T, POD >, \
VectorConstRef<T, Sz>, \
XprLiteral< POD > \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(lhs.constRef(), XprLiteral< POD >(rhs))); \
} \
\
template<class T, int Sz> \
inline \
XprVector< \
XprBinOp< \
Fcnl_##NAME< POD, T>, \
XprLiteral< POD >, \
VectorConstRef<T, Sz> \
>, \
Sz \
> \
NAME (POD lhs, const Vector<T, Sz>& rhs) { \
typedef XprBinOp< \
Fcnl_##NAME< POD, T>, \
XprLiteral< POD >, \
VectorConstRef<T, Sz> \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(XprLiteral< POD >(lhs), rhs.constRef())); \
}
TVMET_IMPLEMENT_MACRO(add, int)
TVMET_IMPLEMENT_MACRO(sub, int)
TVMET_IMPLEMENT_MACRO(mul, int)
TVMET_IMPLEMENT_MACRO(div, int)
TVMET_IMPLEMENT_MACRO(add, float)
TVMET_IMPLEMENT_MACRO(sub, float)
TVMET_IMPLEMENT_MACRO(mul, float)
TVMET_IMPLEMENT_MACRO(div, float)
TVMET_IMPLEMENT_MACRO(add, double)
TVMET_IMPLEMENT_MACRO(sub, double)
TVMET_IMPLEMENT_MACRO(mul, double)
TVMET_IMPLEMENT_MACRO(div, double)
#undef TVMET_IMPLEMENT_MACRO
#if defined(EIGEN_USE_COMPLEX)
/*
* function(Vector<std::complex<T>, Sz>, std::complex<T>)
* function(std::complex<T>, Vector<std::complex<T>, Sz>)
* Note: per se element wise
* \todo type promotion
*/
#define TVMET_IMPLEMENT_MACRO(NAME) \
template<class T, int Sz> \
inline \
XprVector< \
XprBinOp< \
Fcnl_##NAME< std::complex<T>, std::complex<T> >, \
VectorConstRef< std::complex<T>, Sz>, \
XprLiteral< std::complex<T> > \
>, \
Sz \
> \
NAME (const Vector<std::complex<T>, Sz>& lhs, const std::complex<T>& rhs) { \
typedef XprBinOp< \
Fcnl_##NAME< std::complex<T>, std::complex<T> >, \
VectorConstRef< std::complex<T>, Sz>, \
XprLiteral< std::complex<T> > \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(lhs.constRef(), XprLiteral< std::complex<T> >(rhs))); \
} \
\
template<class T, int Sz> \
inline \
XprVector< \
XprBinOp< \
Fcnl_##NAME< std::complex<T>, std::complex<T> >, \
XprLiteral< std::complex<T> >, \
VectorConstRef< std::complex<T>, Sz> \
>, \
Sz \
> \
NAME (const std::complex<T>& lhs, const Vector< std::complex<T>, Sz>& rhs) { \
typedef XprBinOp< \
Fcnl_##NAME< std::complex<T>, std::complex<T> >, \
XprLiteral< std::complex<T> >, \
VectorConstRef< std::complex<T>, Sz> \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(XprLiteral< std::complex<T> >(lhs), rhs.constRef())); \
}
TVMET_IMPLEMENT_MACRO(add)
TVMET_IMPLEMENT_MACRO(sub)
TVMET_IMPLEMENT_MACRO(mul)
TVMET_IMPLEMENT_MACRO(div)
#undef TVMET_IMPLEMENT_MACRO
#endif // defined(EIGEN_USE_COMPLEX)
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* vector specific functions
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/**
* \fn sum(const Vector<T, Sz>& v)
* \brief Compute the sum of the vector.
* \ingroup _unary_function
*
* Simply compute the sum of the given vector as:
* \f[
* \sum_{i = 0}^{Sz-1} v[i]
* \f]
*/
template<class T, int Sz>
inline
typename Traits<T>::sum_type
sum(const Vector<T, Sz>& v) {
return meta::Vector<Sz>::sum(v);
}
/**
* \fn product(const Vector<T, Sz>& v)
* \brief Compute the product of the vector elements.
* \ingroup _unary_function
*
* Simply computer the product of the given vector as:
* \f[
* \prod_{i = 0}^{Sz - 1} v[i]
* \f]
*/
template<class T, int Sz>
inline
typename Traits<T>::sum_type
product(const Vector<T, Sz>& v) {
return meta::Vector<Sz>::product(v);
}
/**
* \fn dot(const Vector<T1, Sz>& lhs, const Vector<T2, Sz>& rhs)
* \brief Compute the dot/inner product
* \ingroup _binary_function
*
* Compute the dot product as:
* \f[
* \sum_{i = 0}^{Sz - 1} ( lhs[i] * rhs[i] )
* \f]
* where lhs is a column vector and rhs is a row vector, both vectors
* have the same dimension.
*/
template<class T1, class T2, int Sz>
inline
typename PromoteTraits<T1, T2>::value_type
dot(const Vector<T1, Sz>& lhs, const Vector<T2, Sz>& rhs) {
return meta::Vector<Sz>::dot(lhs, rhs);
}
/**
* \fn cross(const Vector<T1, 3>& lhs, const Vector<T2, 3>& rhs)
* \brief Compute the cross/outer product
* \ingroup _binary_function
* \note working only for vectors of size = 3
* \todo Implement vector outer product as ET and MT, returning a XprVector
*/
template<class T1, class T2>
inline
Vector<typename PromoteTraits<T1, T2>::value_type, 3>
cross(const Vector<T1, 3>& lhs, const Vector<T2, 3>& rhs) {
typedef typename PromoteTraits<T1, T2>::value_type value_type;
return Vector<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2),
rhs(0)*lhs(2) - lhs(0)*rhs(2),
lhs(0)*rhs(1) - rhs(0)*lhs(1));
}
/**
* \fn norm1(const Vector<T, Sz>& v)
* \brief The \f$l_1\f$ norm of a vector v.
* \ingroup _unary_function
* The norm of any vector is just the square root of the dot product of
* a vector with itself, or
*
* \f[
* |Vector<T, Sz> v| = |v| = \sum_{i=0}^{Sz-1}\,|v[i]|
* \f]
*/
template<class T, int Sz>
inline
typename Traits<T>::sum_type
norm1(const Vector<T, Sz>& v) {
return sum(abs(v));
}
/**
* \fn norm2(const Vector<T, Sz>& v)
* \brief The euklidian norm (or \f$l_2\f$ norm) of a vector v.
* \ingroup _unary_function
* The norm of any vector is just the square root of the dot product of
* a vector with itself, or
*
* \f[
* |Vector<T, Sz> v| = |v| = \sqrt{ \sum_{i=0}^{Sz-1}\,v[i]^2 }
* \f]
*
* \note The internal cast for Vector<int> avoids warnings on sqrt.
*/
template<class T, int Sz>
inline
typename Traits<T>::sum_type
norm2(const Vector<T, Sz>& v) {
return static_cast<T>( std::sqrt(static_cast<typename Traits<T>::float_type>(dot(v, v))) );
}
/**
* \fn normalize(const Vector<T, Sz>& v)
* \brief Normalize the given vector.
* \ingroup _unary_function
* \sa norm2
*
* using the equation:
* \f[
* \frac{Vector<T, Sz> v}{\sqrt{ \sum_{i=0}^{Sz-1}\,v[i]^2 }}
* \f]
*/
template<class T, int Sz>
inline
XprVector<
XprBinOp<
Fcnl_div<T, T>,
VectorConstRef<T, Sz>,
XprLiteral< T >
>,
Sz
>
normalize(const Vector<T, Sz>& v) {
typedef XprBinOp<
Fcnl_div<T, T>,
VectorConstRef<T, Sz>,
XprLiteral< T >
> expr_type;
return XprVector<expr_type, Sz>(
expr_type(v.constRef(), XprLiteral< T >(norm2(v))));
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* min/max unary functions
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/**
* \fn maximum(const XprVector<E, Sz>& e)
* \brief Find the maximum of a vector expression
* \ingroup _unary_function
*/
template<class E, int Sz>
inline
Extremum<typename E::value_type, int, vector_tag>
maximum(const XprVector<E, Sz>& e) {
typedef typename E::value_type value_type;
value_type m_max(e(0));
int m_idx(0);
// this loop is faster than meta templates!
for(int i = 1; i != Sz; ++i) {
if(e(i) > m_max) {
m_max = e(i);
m_idx = i;
}
}
return Extremum<value_type, int, vector_tag>(m_max, m_idx);
}
/**
* \fn maximum(const Vector<T, Sz>& v)
* \brief Find the maximum of a vector
* \ingroup _unary_function
*/
template<class T, int Sz>
inline
Extremum<T, int, vector_tag>
maximum(const Vector<T, Sz>& v) { return maximum(v.expr()); }
/**
* \fn minimum(const XprVector<E, Sz>& e)
* \brief Find the minimum of a vector expression
* \ingroup _unary_function
*/
template<class E, int Sz>
inline
Extremum<typename E::value_type, int, vector_tag>
minimum(const XprVector<E, Sz>& e) {
typedef typename E::value_type value_type;
value_type m_min(e(0));
int m_idx(0);
// this loop is faster than meta templates!
for(int i = 1; i != Sz; ++i) {
if(e(i) < m_min) {
m_min = e(i);
m_idx = i;
}
}
return Extremum<value_type, int, vector_tag>(m_min, m_idx);
}
/**
* \fn minimum(const Vector<T, Sz>& v)
* \brief Find the minimum of a vector
* \ingroup _unary_function
*/
template<class T, int Sz>
inline
Extremum<T, int, vector_tag>
minimum(const Vector<T, Sz>& v) { return minimum(v.expr()); }
/**
* \fn max(const XprVector<E, Sz>& e)
* \brief Find the maximum of a vector expression
* \ingroup _unary_function
*/
template<class E, int Sz>
inline
typename E::value_type
max(const XprVector<E, Sz>& e) {
typedef typename E::value_type value_type;
value_type m_max(e(0));
// this loop is faster than meta templates!
for(int i = 1; i != Sz; ++i)
if(e(i) > m_max)
m_max = e(i);
return m_max;
}
/**
* \fn max(const Vector<T, Sz>& v)
* \brief Find the maximum of a vector
* \ingroup _unary_function
*/
template<class T, int Sz>
inline
T max(const Vector<T, Sz>& v) {
typedef T value_type;
typedef typename Vector<T, Sz>::const_iterator const_iterator;
const_iterator iter(v.begin());
const_iterator last(v.end());
value_type temp(*iter);
for( ; iter != last; ++iter)
if(*iter > temp)
temp = *iter;
return temp;
}
/**
* \fn min(const XprVector<E, Sz>& e)
* \brief Find the minimum of a vector expression
* \ingroup _unary_function
*/
template<class E, int Sz>
inline
typename E::value_type
min(const XprVector<E, Sz>& e) {
typedef typename E::value_type value_type;
value_type m_min(e(0));
// this loop is faster than meta templates!
for(int i = 1; i != Sz; ++i)
if(e(i) < m_min)
m_min = e(i);
return m_min;
}
/**
* \fn min(const Vector<T, Sz>& v)
* \brief Find the minimum of a vector
* \ingroup _unary_function
*/
template<class T, int Sz>
inline
T min(const Vector<T, Sz>& v) {
typedef T value_type;
typedef typename Vector<T, Sz>::const_iterator const_iterator;
const_iterator iter(v.begin());
const_iterator last(v.end());
value_type temp(*iter);
for( ; iter != last; ++iter)
if(*iter < temp)
temp = *iter;
return temp;
}
/**
* \fn cvector_ref(const T* mem)
* \brief Creates an expression wrapper for a C like vector arrays.
* \ingroup _unary_function
*
* This is like creating a vector of external data, as described
* at \ref construct. With this function you wrap an expression
* around a C style vector array and you can operate directly with it
* as usual.
*
* \par Example:
* \code
* static float vertices[N][3] = {
* {-1, 0, 1}, { 1, 0, 1}, ...
* };
* ...
* typedef Vector<float, 3> vector_type;
* ...
* vector_type V( cross(cvector_ref<float, 3>(&vertices[0][0]),
* cvector_ref<float, 3>(&vertices[1][0])) );
* \endcode
*
* \since release 1.6.0
*/
template<class T, int Sz>
inline
XprVector<
VectorConstRef<T, Sz>,
Sz
>
cvector_ref(const T* mem) {
typedef VectorConstRef<T, Sz> expr_type;
return XprVector<expr_type, Sz>(expr_type(mem));
};
} // namespace tvmet
#endif // TVMET_VECTOR_FUNCTIONS_H
// Local Variables:
// mode:C++
// End: