eigen/tvmet-1.7.1/include/tvmet/VectorEval.h
Benoit Jacob ad89fc8295 -- switch Matrix class to column-major order like in Eigen
-- many more Eigenification changes, in preparation of the big merge
-- big changes in the Comma Initializer to allow for column-major order,
   leading to a simpler and cleaner solution. "commaWrite" hook added to
   the classes using the Comma Initializer.
-- lots of API improvements, cleanup, removal of dead/useless stuff
-- testsuite updated
2007-08-17 07:10:44 +00:00

374 lines
10 KiB
C++

/*
* Tiny Vector Matrix Library
* Dense Vector Matrix Libary of Tiny size using Expression Templates
*
* Copyright (C) 2001 - 2003 Olaf Petzold <opetzold@users.sourceforge.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id: VectorEval.h,v 1.14 2003/11/30 08:26:25 opetzold Exp $
*/
#ifndef TVMET_VECTOR_EVAL_H
#define TVMET_VECTOR_EVAL_H
namespace tvmet {
/********************************************************************
* functions all_elements/any_elements
********************************************************************/
/**
* \fn bool all_elements(const XprVector<E, Sz>& e)
* \brief check on statements for all elements
* \ingroup _unary_function
* This is for use with boolean operators like
* \par Example:
* \code
* all_elements(vector > 0) {
* // true branch
* } else {
* // false branch
* }
* \endcode
* \sa \ref compare
*/
template<class E, int Sz>
inline
bool all_elements(const XprVector<E, Sz>& e) {
return meta::Vector<Sz>::all_elements(e);
}
/**
* \fn bool any_elements(const XprVector<E, Sz>& e)
* \brief check on statements for any elements
* \ingroup _unary_function
* This is for use with boolean operators like
* \par Example:
* \code
* any_elements(vector > 0) {
* // true branch
* } else {
* // false branch
* }
* \endcode
* \sa \ref compare
*/
template<class E, int Sz>
inline
bool any_elements(const XprVector<E, Sz>& e) {
return meta::Vector<Sz>::any_elements(e);
}
/*
* trinary evaluation functions with vectors and xpr of
* XprVector<E1, Sz> ? Vector<T2, Sz> : Vector<T3, Sz>
* XprVector<E1, Sz> ? Vector<T2, Sz> : XprVector<E3, Sz>
* XprVector<E1, Sz> ? XprVector<E2, Sz> : Vector<T3, Sz>
* XprVector<E1, Sz> ? XprVector<E2, Sz> : XprVector<E3, Sz>
*/
/**
* eval(const XprVector<E1, Sz>& e1, const Vector<T2, Sz>& v2, const Vector<T3, Sz>& v3)
* \brief Evals the vector expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E1, class T2, class T3, int Sz>
inline
XprVector<
XprEval<
XprVector<E1, Sz>,
VectorConstRef<T2, Sz>,
VectorConstRef<T3, Sz>
>,
Sz
>
eval(const XprVector<E1, Sz>& e1, const Vector<T2, Sz>& v2, const Vector<T3, Sz>& v3) {
typedef XprEval<
XprVector<E1, Sz>,
VectorConstRef<T2, Sz>,
VectorConstRef<T3, Sz>
> expr_type;
return XprVector<expr_type, Sz>(
expr_type(e1, v2.constRef(), v3.constRef()));
}
/**
* eval(const XprVector<E1, Sz>& e1, const Vector<T2, Sz>& v2, const XprVector<E3, Sz>& e3)
* \brief Evals the vector expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E1, class T2, class E3, int Sz>
inline
XprVector<
XprEval<
XprVector<E1, Sz>,
VectorConstRef<T2, Sz>,
XprVector<E3, Sz>
>,
Sz
>
eval(const XprVector<E1, Sz>& e1, const Vector<T2, Sz>& v2, const XprVector<E3, Sz>& e3) {
typedef XprEval<
XprVector<E1, Sz>,
VectorConstRef<T2, Sz>,
XprVector<E3, Sz>
> expr_type;
return XprVector<expr_type, Sz>(
expr_type(e1, v2.constRef(), e3));
}
/**
* eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, const Vector<T3, Sz>& v3)
* \brief Evals the vector expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E1, class E2, class T3, int Sz>
inline
XprVector<
XprEval<
XprVector<E1, Sz>,
XprVector<E2, Sz>,
VectorConstRef<T3, Sz>
>,
Sz
>
eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, const Vector<T3, Sz>& v3) {
typedef XprEval<
XprVector<E1, Sz>,
XprVector<E2, Sz>,
VectorConstRef<T3, Sz>
> expr_type;
return XprVector<expr_type, Sz>(
expr_type(e1, e2, v3.constRef()));
}
/**
* eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, const XprVector<E3, Sz>& e3)
* \brief Evals the vector expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E1, class E2, class E3, int Sz>
inline
XprVector<
XprEval<
XprVector<E1, Sz>,
XprVector<E2, Sz>,
XprVector<E3, Sz>
>,
Sz
>
eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, const XprVector<E3, Sz>& e3) {
typedef XprEval<
XprVector<E1, Sz>,
XprVector<E2, Sz>,
XprVector<E3, Sz>
> expr_type;
return XprVector<expr_type, Sz>(expr_type(e1, e2, e3));
}
/*
* trinary evaluation functions with vectors, xpr of and POD
*
* XprVector<E, Sz> ? POD1 : POD2
* XprVector<E1, Sz> ? POD : XprVector<E3, Sz>
* XprVector<E1, Sz> ? XprVector<E2, Sz> : POD
*/
#define TVMET_IMPLEMENT_MACRO(POD) \
template<class E, int Sz> \
inline \
XprVector< \
XprEval< \
XprVector<E, Sz>, \
XprLiteral< POD >, \
XprLiteral< POD > \
>, \
Sz \
> \
eval(const XprVector<E, Sz>& e, POD x2, POD x3) { \
typedef XprEval< \
XprVector<E, Sz>, \
XprLiteral< POD >, \
XprLiteral< POD > \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(e, XprLiteral< POD >(x2), XprLiteral< POD >(x3))); \
} \
\
template<class E1, class E3, int Sz> \
inline \
XprVector< \
XprEval< \
XprVector<E1, Sz>, \
XprLiteral< POD >, \
XprVector<E3, Sz> \
>, \
Sz \
> \
eval(const XprVector<E1, Sz>& e1, POD x2, const XprVector<E3, Sz>& e3) { \
typedef XprEval< \
XprVector<E1, Sz>, \
XprLiteral< POD >, \
XprVector<E3, Sz> \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(e1, XprLiteral< POD >(x2), e3)); \
} \
\
template<class E1, class E2, int Sz> \
inline \
XprVector< \
XprEval< \
XprVector<E1, Sz>, \
XprVector<E2, Sz>, \
XprLiteral< POD > \
>, \
Sz \
> \
eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, POD x3) { \
typedef XprEval< \
XprVector<E1, Sz>, \
XprVector<E2, Sz>, \
XprLiteral< POD > \
> expr_type; \
return XprVector<expr_type, Sz>( \
expr_type(e1, e2, XprLiteral< POD >(x3))); \
}
TVMET_IMPLEMENT_MACRO(int)
TVMET_IMPLEMENT_MACRO(float)
TVMET_IMPLEMENT_MACRO(double)
#undef TVMET_IMPLEMENT_MACRO
/*
* trinary evaluation functions with vectors, xpr of and complex<> types
*
* XprVector<E, Sz> e, std::complex<T> z2, std::complex<T> z3
* XprVector<E1, Sz> e1, std::complex<T> z2, XprVector<E3, Sz> e3
* XprVector<E1, Sz> e1, XprVector<E2, Sz> e2, std::complex<T> z3
*/
#if defined(EIGEN_USE_COMPLEX)
/**
* eval(const XprVector<E, Sz>& e, std::complex<T> z2, std::complex<T> z3)
* \brief Evals the vector expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E, int Sz, class T>
inline
XprVector<
XprEval<
XprVector<E, Sz>,
XprLiteral< std::complex<T> >,
XprLiteral< std::complex<T> >
>,
Sz
>
eval(const XprVector<E, Sz>& e, std::complex<T> z2, std::complex<T> z3) {
typedef XprEval<
XprVector<E, Sz>,
XprLiteral< std::complex<T> >,
XprLiteral< std::complex<T> >
> expr_type;
return XprVector<expr_type, Sz>(
expr_type(e, XprLiteral< std::complex<T> >(z2), XprLiteral< std::complex<T> >(z3)));
}
/**
* eval(const XprVector<E1, Sz>& e1, std::complex<T> z2, const XprVector<E3, Sz>& e3)
* \brief Evals the vector expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E1, class E3, int Sz, class T>
inline
XprVector<
XprEval<
XprVector<E1, Sz>,
XprLiteral< std::complex<T> >,
XprVector<E3, Sz>
>,
Sz
>
eval(const XprVector<E1, Sz>& e1, std::complex<T> z2, const XprVector<E3, Sz>& e3) {
typedef XprEval<
XprVector<E1, Sz>,
XprLiteral< std::complex<T> >,
XprVector<E3, Sz>
> expr_type;
return XprVector<expr_type, Sz>(
expr_type(e1, XprLiteral< std::complex<T> >(z2), e3));
}
/**
* eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, std::complex<T> z3)
* \brief Evals the vector expressions.
* \ingroup _trinary_function
* This eval is for the a?b:c syntax, since it's not allowed to overload
* these operators.
*/
template<class E1, class E2, int Sz, class T>
inline
XprVector<
XprEval<
XprVector<E1, Sz>,
XprVector<E2, Sz>,
XprLiteral< std::complex<T> >
>,
Sz
>
eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, std::complex<T> z3) {
typedef XprEval<
XprVector<E1, Sz>,
XprVector<E2, Sz>,
XprLiteral< std::complex<T> >
> expr_type;
return XprVector<expr_type, Sz>(
expr_type(e1, e2, XprLiteral< std::complex<T> >(z3)));
}
#endif // defined(EIGEN_USE_COMPLEX)
} // namespace tvmet
#endif // TVMET_VECTOR_EVAL_H
// Local Variables:
// mode:C++
// End: