eigen/Eigen/src/Geometry/Quaternion.h
Gael Guennebaud bc0c7c57ed Added an extensible mechanism to support any kind of rotation
representation in Transform via the template static class
ToRotationMatrix.
Added a lightweight AngleAxis class (similar to Rotation2D).
2008-06-15 17:22:41 +00:00

452 lines
15 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H
/** \class Quaternion
*
* \brief The quaternion class used to represent 3D orientations and rotations
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
*
* This class represents a quaternion that is a convenient representation of
* orientations and rotations of objects in three dimensions. Compared to other
* representations like Euler angles or 3x3 matrices, quatertions offer the
* following advantages:
* - compact storage (4 scalars)
* - efficient to compose (28 flops),
* - stable spherical interpolation
*
*/
template<typename _Scalar>
class Quaternion
{
typedef Matrix<_Scalar, 4, 1> Coefficients;
Coefficients m_coeffs;
public:
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,3,3> Matrix3;
inline Scalar x() const { return m_coeffs.coeff(0); }
inline Scalar y() const { return m_coeffs.coeff(1); }
inline Scalar z() const { return m_coeffs.coeff(2); }
inline Scalar w() const { return m_coeffs.coeff(3); }
inline Scalar& x() { return m_coeffs.coeffRef(0); }
inline Scalar& y() { return m_coeffs.coeffRef(1); }
inline Scalar& z() { return m_coeffs.coeffRef(2); }
inline Scalar& w() { return m_coeffs.coeffRef(3); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
inline const Block<Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }
/** \returns a vector expression of the imaginary part (x,y,z) */
inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
/** \returns a read-only vector expression of the coefficients */
inline const Coefficients& _coeffs() const { return m_coeffs; }
/** \returns a vector expression of the coefficients */
inline Coefficients& _coeffs() { return m_coeffs; }
// FIXME what is the prefered order: w x,y,z or x,y,z,w ?
inline Quaternion(Scalar w = 1.0, Scalar x = 0.0, Scalar y = 0.0, Scalar z = 0.0)
{
m_coeffs.coeffRef(0) = x;
m_coeffs.coeffRef(1) = y;
m_coeffs.coeffRef(2) = z;
m_coeffs.coeffRef(3) = w;
}
/** Copy constructor */
inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
inline Quaternion& operator=(const Quaternion& other)
{
m_coeffs = other.m_coeffs;
return *this;
}
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::identity()
*/
inline static Quaternion identity() { return Quaternion(1, 0, 0, 0); }
/** \sa Quaternion::identity(), MatrixBase::setIdentity()
*/
inline Quaternion& setIdentity() { m_coeffs << 1, 0, 0, 0; return *this; }
/** \returns the squared norm of the quaternion's coefficients
* \sa Quaternion::norm(), MatrixBase::norm2()
*/
inline Scalar norm2() const { return m_coeffs.norm2(); }
/** \returns the norm of the quaternion's coefficients
* \sa Quaternion::norm2(), MatrixBase::norm()
*/
inline Scalar norm() const { return m_coeffs.norm(); }
template<typename Derived>
Quaternion& fromRotationMatrix(const MatrixBase<Derived>& m);
Matrix3 toRotationMatrix(void) const;
template<typename Derived>
Quaternion& fromAngleAxis (const Scalar& angle, const MatrixBase<Derived>& axis);
void toAngleAxis(Scalar& angle, Vector3& axis) const;
Quaternion& fromEulerAngles(Vector3 eulerAngles);
Vector3 toEulerAngles(void) const;
template<typename Derived1, typename Derived2>
Quaternion& fromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
inline Quaternion operator* (const Quaternion& q) const;
inline Quaternion& operator*= (const Quaternion& q);
Quaternion inverse(void) const;
Quaternion conjugate(void) const;
Quaternion slerp(Scalar t, const Quaternion& other) const;
template<typename Derived>
Vector3 operator* (const MatrixBase<Derived>& vec) const;
protected:
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
inline Quaternion(const Eigen::MatrixBase<OtherDerived>& other)
{
m_coeffs = other;
}
/** Copies the value of the expression \a other into \c *this.
*/
template<typename OtherDerived>
inline Quaternion& operator=(const MatrixBase<OtherDerived>& other)
{
m_coeffs = other.derived();
return *this;
}
};
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
{
return Quaternion
(
this->w() * other.w() - this->x() * other.x() - this->y() * other.y() - this->z() * other.z(),
this->w() * other.x() + this->x() * other.w() + this->y() * other.z() - this->z() * other.y(),
this->w() * other.y() + this->y() * other.w() + this->z() * other.x() - this->x() * other.z(),
this->w() * other.z() + this->z() * other.w() + this->x() * other.y() - this->y() * other.x()
);
}
template <typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
{
return (*this = *this * other);
}
/** Rotation of a vector by a quaternion.
* \remarks If the quaternion is used to rotate several points (>1)
* then it is much more efficient to first convert it to a 3x3 Matrix.
* Comparison of the operation cost for n transformations:
* - Quaternion: 30n
* - Via a Matrix3: 24 + 15n
*/
template <typename Scalar>
template<typename Derived>
inline typename Quaternion<Scalar>::Vector3
Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
{
// Note that this algorithm comes from the optimization by hand
// of the conversion to a Matrix followed by a Matrix/Vector product.
// It appears to be much faster than the common algorithm found
// in the litterature (30 versus 39 flops). It also requires two
// Vector3 as temporaries.
Vector3 uv;
uv = 2 * this->vec().cross(v);
return v + this->w() * uv + this->vec().cross(uv);
}
/** Convert the quaternion to a 3x3 rotation matrix */
template<typename Scalar>
inline typename Quaternion<Scalar>::Matrix3
Quaternion<Scalar>::toRotationMatrix(void) const
{
// FIXME another option would be to declare toRotationMatrix like that:
// OtherDerived& toRotationMatrix(MatrixBase<OtherDerived>& m)
// it would fill m and returns a ref to m.
// the advantages is that way we can accept 4x4 and 3x4 matrices filling the rest of the
// matrix with I... ??
Matrix3 res;
Scalar tx = 2*this->x();
Scalar ty = 2*this->y();
Scalar tz = 2*this->z();
Scalar twx = tx*this->w();
Scalar twy = ty*this->w();
Scalar twz = tz*this->w();
Scalar txx = tx*this->x();
Scalar txy = ty*this->x();
Scalar txz = tz*this->x();
Scalar tyy = ty*this->y();
Scalar tyz = tz*this->y();
Scalar tzz = tz*this->z();
res.coeffRef(0,0) = 1-(tyy+tzz);
res.coeffRef(0,1) = txy-twz;
res.coeffRef(0,2) = txz+twy;
res.coeffRef(1,0) = txy+twz;
res.coeffRef(1,1) = 1-(txx+tzz);
res.coeffRef(1,2) = tyz-twx;
res.coeffRef(2,0) = txz-twy;
res.coeffRef(2,1) = tyz+twx;
res.coeffRef(2,2) = 1-(txx+tyy);
return res;
}
/** updates \c *this from the rotation matrix \a m and returns a reference to \c *this
* \warning the size of the input matrix expression \a m must be 3x3 at compile time
*/
template<typename Scalar>
template<typename Derived>
Quaternion<Scalar>& Quaternion<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
{
// FIXME maybe this function could accept 4x4 and 3x4 matrices as well ? (simply update the assert)
// FIXME this function could also be static and returns a temporary ?
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==3 && Derived::ColsAtCompileTime==3,you_did_a_programming_error);
// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
Scalar t = mat.trace();
if (t > 0)
{
t = ei_sqrt(t + 1.0);
this->w() = 0.5*t;
t = 0.5/t;
this->x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
this->y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
this->z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
}
else
{
int i = 0;
if (mat.coeff(1,1) > mat.coeff(0,0))
i = 1;
if (mat.coeff(2,2) > mat.coeff(i,i))
i = 2;
int j = (i+1)%3;
int k = (j+1)%3;
t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + 1.0);
m_coeffs.coeffRef(i) = 0.5 * t;
t = 0.5/t;
this->w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
m_coeffs.coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
m_coeffs.coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
}
return *this;
}
/** updates \c *this from the rotation defined by axis \a axis and angle \a angle
* and returns a reference to \c *this
* \warning the size of the input vector expression \a axis must be 3 at compile time
*/
template<typename Scalar>
template<typename Derived>
inline Quaternion<Scalar>& Quaternion<Scalar>
::fromAngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis)
{
ei_assert(Derived::SizeAtCompileTime==3);
Scalar ha = 0.5*angle;
this->w() = ei_cos(ha);
this->vec() = ei_sin(ha) * axis;
return *this;
}
/** Computes and returns the angle and axis of the rotation represented by the quaternion.
* The values are returned in the arguments \a angle and \a axis respectively.
* The returned axis is normalized.
*/
template <typename Scalar>
void Quaternion<Scalar>::toAngleAxis(Scalar& angle, Vector3& axis) const
{
// FIXME should we split this function to an "angle" and an "axis" functions ?
// the drawbacks is that this approach would require to compute twice the norm of (x,y,z)...
// or we returns a Vector4, or a small AngleAxis object... ???
Scalar n2 = this->vec().norm2();
if (ei_isMuchSmallerThan(n2,Scalar(1)))
{
angle = 0;
axis << 1, 0, 0;
}
else
{
angle = 2*std::acos(this->w());
axis = this->vec() / ei_sqrt(n2);
}
}
/** updates \c *this from the rotation defined by the Euler angles \a eulerAngles,
* and returns a reference to \c *this
*/
template <typename Scalar>
Quaternion<Scalar>& Quaternion<Scalar>::fromEulerAngles(Vector3 eulerAngles)
{
// FIXME should the arguments be 3 scalars or a single Vector3 ?
eulerAngles *= 0.5;
Vector3 cosines = eulerAngles.cwiseCos();
Vector3 sines = eulerAngles.cwiseSin();
Scalar cYcZ = cosines.y() * cosines.z();
Scalar sYsZ = sines.y() * sines.z();
Scalar sYcZ = sines.y() * cosines.z();
Scalar cYsZ = cosines.y() * sines.z();
this->w() = cosines.x() * cYcZ + sines.x() * sYsZ;
this->x() = sines.x() * cYcZ - cosines.x() * sYsZ;
this->y() = cosines.x() * sYcZ + sines.x() * cYsZ;
this->z() = cosines.x() * cYsZ - sines.x() * sYcZ;
return *this;
}
/** Computes and returns the Euler angles corresponding to the quaternion \c *this.
*/
template <typename Scalar>
typename Quaternion<Scalar>::Vector3 Quaternion<Scalar>::toEulerAngles(void) const
{
Scalar y2 = this->y() * this->y();
return Vector3(
std::atan2(2*(this->w()*this->x() + this->y()*this->z()), (1 - 2*(this->x()*this->x() + y2))),
std::asin( 2*(this->w()*this->y() - this->z()*this->x())),
std::atan2(2*(this->w()*this->z() + this->x()*this->y()), (1 - 2*(y2 + this->z()*this->z()))));
}
/** Makes a quaternion representing the rotation between two vectors \a a and \a b.
* \returns a reference to the actual quaternion
* Note that the two input vectors have \b not to be normalized.
*/
template<typename Scalar>
template<typename Derived1, typename Derived2>
inline Quaternion<Scalar>& Quaternion<Scalar>::fromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
Vector3 v0 = a.normalized();
Vector3 v1 = b.normalized();
Vector3 axis = v0.cross(v1);
Scalar c = v0.dot(v1);
// if dot == 1, vectors are the same
if (ei_isApprox(c,Scalar(1)))
{
// set to identity
this->w() = 1; this->vec().setZero();
}
Scalar s = ei_sqrt((1+c)*2);
Scalar invs = 1./s;
this->vec() = axis * invs;
this->w() = s * 0.5;
return *this;
}
/** \returns the multiplicative inverse of \c *this
* Note that in most cases, i.e., if you simply want the opposite
* rotation, it is enough to use the conjugate.
*
* \sa Quaternion::conjugate()
*/
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
{
// FIXME should this funtion be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
Scalar n2 = this->norm2();
if (n2 > 0)
return conjugate()._coeffs() / n2;
else
{
// return an invalid result to flag the error
return Coefficients::zero();
}
}
/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
* if the quaternion is normalized.
* The conjugate of a quaternion represents the opposite rotation.
*
* \sa Quaternion::inverse()
*/
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
{
return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
}
/** \returns the spherical linear interpolation between the two quaternions
* \c *this and \a other at the parameter \a t
*/
template <typename Scalar>
Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
{
// FIXME options for this function would be:
// 1 - Quaternion& fromSlerp(Scalar t, const Quaternion& q0, const Quaternion& q1);
// which set *this from the s-lerp and returns *this
// 2 - Quaternion slerp(Scalar t, const Quaternion& other) const
// which returns the s-lerp between this and other
// ??
if (*this == other)
return *this;
Scalar d = this->dot(other);
// theta is the angle between the 2 quaternions
Scalar theta = std::acos(ei_abs(d));
Scalar sinTheta = ei_sin(theta);
Scalar scale0 = ei_sin( ( 1 - t ) * theta) / sinTheta;
Scalar scale1 = ei_sin( ( t * theta) ) / sinTheta;
if (d<0)
scale1 = -scale1;
return scale0 * (*this) + scale1 * other;
}
#endif // EIGEN_QUATERNION_H