eigen/Eigen/src/Core/util/Memory.h
Benoit Jacob 8551505436 problem solved, we really want public inheritance and it is only
automatic when the _child_ class is a struct.
2009-01-05 18:21:44 +00:00

257 lines
10 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MEMORY_H
#define EIGEN_MEMORY_H
#ifdef __linux
// it seems we cannot assume posix_memalign is defined in the stdlib header
extern "C" int posix_memalign (void **, size_t, size_t) throw ();
#endif
struct ei_byte_forcing_aligned_malloc
{
unsigned char c; // sizeof must be 1.
};
template<typename T> struct ei_force_aligned_malloc { enum { ret = 0 }; };
template<> struct ei_force_aligned_malloc<ei_byte_forcing_aligned_malloc> { enum { ret = 1 }; };
/** \internal allocates \a size * sizeof(\a T) bytes. If vectorization is enabled and T is such that a packet
* containts more than one T, then the returned pointer is guaranteed to have 16 bytes alignment.
* On allocation error, the returned pointer is undefined, but if exceptions are enabled then a std::bad_alloc is thrown.
*/
template<typename T>
inline T* ei_aligned_malloc(size_t size)
{
if(ei_packet_traits<T>::size>1 || ei_force_aligned_malloc<T>::ret)
{
void *void_result;
#ifdef __linux
#ifdef EIGEN_EXCEPTIONS
const int failed =
#endif
posix_memalign(&void_result, 16, size*sizeof(T));
#else
#ifdef _MSC_VER
void_result = _aligned_malloc(size*sizeof(T), 16);
#elif defined(__APPLE__)
void_result = malloc(size*sizeof(T)); // Apple's malloc() already returns aligned ptrs
#else
void_result = _mm_malloc(size*sizeof(T), 16);
#endif
#ifdef EIGEN_EXCEPTIONS
const int failed = (void_result == 0);
#endif
#endif
#ifdef EIGEN_EXCEPTIONS
if(failed)
throw std::bad_alloc();
#endif
// if the user uses Eigen on some fancy scalar type such as multiple-precision numbers,
// and this type has a custom operator new, then we want to honor this operator new!
// so when we use C functions to allocate memory, we must be careful to call manually the constructor using
// the special placement-new syntax.
return new(void_result) T[size];
}
else
return new T[size]; // here we really want a new, not a malloc. Justification: if the user uses Eigen on
// some fancy scalar type such as multiple-precision numbers, and this type has a custom operator new,
// then we want to honor this operator new! Anyway this type won't have vectorization so the vectorizing path
// is irrelevant here. Yes, we should say somewhere in the docs that if the user uses a custom scalar type then
// he can't have both vectorization and a custom operator new on his scalar type.
}
/** \internal free memory allocated with ei_aligned_malloc
* The \a size parameter is used to determine on how many elements to call the destructor. If you don't
* want any destructor to be called, just pass 0.
*/
template<typename T>
inline void ei_aligned_free(T* ptr, size_t size)
{
if (ei_packet_traits<T>::size>1 || ei_force_aligned_malloc<T>::ret)
{
// need to call manually the dtor in case T is some user-defined fancy numeric type.
// always destruct an array starting from the end.
while(size) ptr[--size].~T();
#if defined(__linux)
free(ptr);
#elif defined(__APPLE__)
free(ptr);
#elif defined(_MSC_VER)
_aligned_free(ptr);
#else
_mm_free(ptr);
#endif
}
else
delete[] ptr;
}
/** \internal \returns the number of elements which have to be skipped such that data are 16 bytes aligned */
template<typename Scalar>
inline static int ei_alignmentOffset(const Scalar* ptr, int maxOffset)
{
typedef typename ei_packet_traits<Scalar>::type Packet;
const int PacketSize = ei_packet_traits<Scalar>::size;
const int PacketAlignedMask = PacketSize-1;
const bool Vectorized = PacketSize>1;
return Vectorized
? std::min<int>( (PacketSize - (int((size_t(ptr)/sizeof(Scalar))) & PacketAlignedMask))
& PacketAlignedMask, maxOffset)
: 0;
}
/** \internal
* ei_aligned_stack_alloc(TYPE,SIZE) allocates an aligned buffer of sizeof(TYPE)*SIZE bytes
* on the stack if sizeof(TYPE)*SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT.
* Otherwise the memory is allocated on the heap.
* Data allocated with ei_aligned_stack_alloc \b must be freed by calling ei_aligned_stack_free(PTR,TYPE,SIZE).
* \code
* float * data = ei_aligned_stack_alloc(float,array.size());
* // ...
* ei_aligned_stack_free(data,float,array.size());
* \endcode
*/
#ifdef __linux__
#define ei_aligned_stack_alloc(TYPE,SIZE) ((sizeof(TYPE)*(SIZE)>EIGEN_STACK_ALLOCATION_LIMIT) \
? ei_aligned_malloc<TYPE>(SIZE) \
: (TYPE*)alloca(sizeof(TYPE)*(SIZE)))
#define ei_aligned_stack_free(PTR,TYPE,SIZE) if (sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT) ei_aligned_free(PTR,SIZE)
#else
#define ei_aligned_stack_alloc(TYPE,SIZE) ei_aligned_malloc<TYPE>(SIZE)
#define ei_aligned_stack_free(PTR,TYPE,SIZE) ei_aligned_free(PTR,SIZE)
#endif
/** \class WithAlignedOperatorNew
*
* \brief Enforces instances of inherited classes to be 16 bytes aligned when allocated with operator new
*
* When Eigen's explicit vectorization is enabled, Eigen assumes that some fixed sizes types are aligned
* on a 16 bytes boundary. Those include all Matrix types having a sizeof multiple of 16 bytes, e.g.:
* - Vector2d, Vector4f, Vector4i, Vector4d,
* - Matrix2d, Matrix4f, Matrix4i, Matrix4d,
* - etc.
* When an object is statically allocated, the compiler will automatically and always enforces 16 bytes
* alignment of the data when needed. However some troubles might appear when data are dynamically allocated.
* Let's pick an example:
* \code
* struct Foo {
* char dummy;
* Vector4f some_vector;
* };
* Foo obj1; // static allocation
* obj1.some_vector = Vector4f(..); // => OK
*
* Foo *pObj2 = new Foo; // dynamic allocation
* pObj2->some_vector = Vector4f(..); // => !! might segfault !!
* \endcode
* Here, the problem is that operator new is not aware of the compile time alignment requirement of the
* type Vector4f (and hence of the type Foo). Therefore "new Foo" does not necessarily returns a 16 bytes
* aligned pointer. The purpose of the class WithAlignedOperatorNew is exactly to overcome this issue by
* overloading the operator new to return aligned data when the vectorization is enabled.
* Here is a similar safe example:
* \code
* struct Foo : public WithAlignedOperatorNew {
* char dummy;
* Vector4f some_vector;
* };
* Foo *pObj2 = new Foo; // dynamic allocation
* pObj2->some_vector = Vector4f(..); // => SAFE !
* \endcode
*
* \sa class ei_new_allocator
*/
struct WithAlignedOperatorNew
{
void *operator new(size_t size) throw()
{
return ei_aligned_malloc<ei_byte_forcing_aligned_malloc>(size);
}
void *operator new[](size_t size) throw()
{
return ei_aligned_malloc<ei_byte_forcing_aligned_malloc>(size);
}
void operator delete(void * ptr) { ei_aligned_free(static_cast<ei_byte_forcing_aligned_malloc *>(ptr), 0); }
void operator delete[](void * ptr) { ei_aligned_free(static_cast<ei_byte_forcing_aligned_malloc *>(ptr), 0); }
};
template<typename T, int SizeAtCompileTime,
bool NeedsToAlign = (SizeAtCompileTime!=Dynamic) && ((sizeof(T)*SizeAtCompileTime)%16==0)>
struct ei_with_aligned_operator_new : public WithAlignedOperatorNew {};
template<typename T, int SizeAtCompileTime>
struct ei_with_aligned_operator_new<T,SizeAtCompileTime,false> {};
/** \class ei_new_allocator
*
* \brief stl compatible allocator to use with with fixed-size vector and matrix types
*
* STL allocator simply wrapping operators new[] and delete[]. Unlike GCC's default new_allocator,
* ei_new_allocator call operator new on the type \a T and not the general new operator ignoring
* overloaded version of operator new.
*
* Example:
* \code
* // Vector4f requires 16 bytes alignment:
* std::vector<Vector4f,ei_new_allocator<Vector4f> > dataVec4;
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
* std::vector<Vector3f> dataVec3;
*
* struct Foo : WithAlignedOperatorNew {
* char dummy;
* Vector4f some_vector;
* };
* std::vector<Foo,ei_new_allocator<Foo> > dataFoo;
* \endcode
*
* \sa class WithAlignedOperatorNew
*/
template<typename T> class ei_new_allocator
{
public:
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
template<typename OtherType>
struct rebind
{ typedef ei_new_allocator<OtherType> other; };
T* address(T& ref) const { return &ref; }
const T* address(const T& ref) const { return &ref; }
T* allocate(size_t size, const void* = 0) { return new T[size]; }
void deallocate(T* ptr, size_t) { delete[] ptr; }
size_t max_size() const { return size_t(-1) / sizeof(T); }
// FIXME I'm note sure about this construction...
void construct(T* ptr, const T& refObj) { ::new(ptr) T(refObj); }
void destroy(T* ptr) { ptr->~T(); }
};
#endif // EIGEN_MEMORY_H