116 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			116 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// This file is part of Eigen, a lightweight C++ template library
 | 
						|
// for linear algebra.
 | 
						|
//
 | 
						|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
 | 
						|
//
 | 
						|
// This Source Code Form is subject to the terms of the Mozilla
 | 
						|
// Public License v. 2.0. If a copy of the MPL was not distributed
 | 
						|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
						|
 | 
						|
#include "main.h"
 | 
						|
 | 
						|
// workaround aggressive optimization in ICC
 | 
						|
template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; }
 | 
						|
 | 
						|
template<typename T> bool isFinite(const T& x)
 | 
						|
{
 | 
						|
  return isNotNaN(sub(x,x));
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> EIGEN_DONT_INLINE T copy(const T& x)
 | 
						|
{
 | 
						|
  return x;
 | 
						|
}
 | 
						|
 | 
						|
template<typename MatrixType> void stable_norm(const MatrixType& m)
 | 
						|
{
 | 
						|
  /* this test covers the following files:
 | 
						|
     StableNorm.h
 | 
						|
  */
 | 
						|
  using std::sqrt;
 | 
						|
  using std::abs;
 | 
						|
  typedef typename MatrixType::Index Index;
 | 
						|
  typedef typename MatrixType::Scalar Scalar;
 | 
						|
  typedef typename NumTraits<Scalar>::Real RealScalar;
 | 
						|
 | 
						|
  // Check the basic machine-dependent constants.
 | 
						|
  {
 | 
						|
    int ibeta, it, iemin, iemax;
 | 
						|
 | 
						|
    ibeta = std::numeric_limits<RealScalar>::radix;         // base for floating-point numbers
 | 
						|
    it    = std::numeric_limits<RealScalar>::digits;        // number of base-beta digits in mantissa
 | 
						|
    iemin = std::numeric_limits<RealScalar>::min_exponent;  // minimum exponent
 | 
						|
    iemax = std::numeric_limits<RealScalar>::max_exponent;  // maximum exponent
 | 
						|
 | 
						|
    VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2))
 | 
						|
           && "the stable norm algorithm cannot be guaranteed on this computer");
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  Index rows = m.rows();
 | 
						|
  Index cols = m.cols();
 | 
						|
 | 
						|
  // get a non-zero random factor
 | 
						|
  Scalar factor = internal::random<Scalar>();
 | 
						|
  while(numext::abs2(factor)<RealScalar(1e-4))
 | 
						|
    factor = internal::random<Scalar>();
 | 
						|
  Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
 | 
						|
  
 | 
						|
  factor = internal::random<Scalar>();
 | 
						|
  while(numext::abs2(factor)<RealScalar(1e-4))
 | 
						|
    factor = internal::random<Scalar>();
 | 
						|
  Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4));
 | 
						|
 | 
						|
  MatrixType  vzero = MatrixType::Zero(rows, cols),
 | 
						|
              vrand = MatrixType::Random(rows, cols),
 | 
						|
              vbig(rows, cols),
 | 
						|
              vsmall(rows,cols);
 | 
						|
 | 
						|
  vbig.fill(big);
 | 
						|
  vsmall.fill(small);
 | 
						|
 | 
						|
  VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
 | 
						|
  VERIFY_IS_APPROX(vrand.stableNorm(),      vrand.norm());
 | 
						|
  VERIFY_IS_APPROX(vrand.blueNorm(),        vrand.norm());
 | 
						|
  VERIFY_IS_APPROX(vrand.hypotNorm(),       vrand.norm());
 | 
						|
 | 
						|
  RealScalar size = static_cast<RealScalar>(m.size());
 | 
						|
 | 
						|
  // test isFinite
 | 
						|
  VERIFY(!isFinite( std::numeric_limits<RealScalar>::infinity()));
 | 
						|
  VERIFY(!isFinite(sqrt(-abs(big))));
 | 
						|
 | 
						|
  // test overflow
 | 
						|
  VERIFY(isFinite(sqrt(size)*abs(big)));
 | 
						|
  VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size)*big)); // here the default norm must fail
 | 
						|
  VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size)*abs(big));
 | 
						|
  VERIFY_IS_APPROX(vbig.blueNorm(),   sqrt(size)*abs(big));
 | 
						|
  VERIFY_IS_APPROX(vbig.hypotNorm(),  sqrt(size)*abs(big));
 | 
						|
 | 
						|
  // test underflow
 | 
						|
  VERIFY(isFinite(sqrt(size)*abs(small)));
 | 
						|
  VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())),   abs(sqrt(size)*small)); // here the default norm must fail
 | 
						|
  VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size)*abs(small));
 | 
						|
  VERIFY_IS_APPROX(vsmall.blueNorm(),   sqrt(size)*abs(small));
 | 
						|
  VERIFY_IS_APPROX(vsmall.hypotNorm(),  sqrt(size)*abs(small));
 | 
						|
 | 
						|
  // Test compilation of cwise() version
 | 
						|
  VERIFY_IS_APPROX(vrand.colwise().stableNorm(),      vrand.colwise().norm());
 | 
						|
  VERIFY_IS_APPROX(vrand.colwise().blueNorm(),        vrand.colwise().norm());
 | 
						|
  VERIFY_IS_APPROX(vrand.colwise().hypotNorm(),       vrand.colwise().norm());
 | 
						|
  VERIFY_IS_APPROX(vrand.rowwise().stableNorm(),      vrand.rowwise().norm());
 | 
						|
  VERIFY_IS_APPROX(vrand.rowwise().blueNorm(),        vrand.rowwise().norm());
 | 
						|
  VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(),       vrand.rowwise().norm());
 | 
						|
}
 | 
						|
 | 
						|
void test_stable_norm()
 | 
						|
{
 | 
						|
  for(int i = 0; i < g_repeat; i++) {
 | 
						|
    CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) );
 | 
						|
    CALL_SUBTEST_2( stable_norm(Vector4d()) );
 | 
						|
    CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) );
 | 
						|
    CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) );
 | 
						|
    CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) );
 | 
						|
  }
 | 
						|
}
 |