eigen/tvmet-1.7.1/include/tvmet/Vector.h
Benoit Jacob 37bd64b496 Remove remaining per-element math functions. Remove defines for IEEE, SYSV and complex
math. Now the user has to define himself EIGEN_USE_COMPLEX if he wants complex support.
Remove TVMET_OPTIMIZE. More cleanup.
2007-06-18 07:01:42 +00:00

516 lines
17 KiB
C++

/*
* Tiny Vector Matrix Library
* Dense Vector Matrix Libary of Tiny size using Expression Templates
*
* Copyright (C) 2001 - 2003 Olaf Petzold <opetzold@users.sourceforge.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* lesser General Public License for more details.
*
* You should have received a copy of the GNU lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id: Vector.h,v 1.44 2004/09/16 09:14:18 opetzold Exp $
*/
#ifndef TVMET_VECTOR_H
#define TVMET_VECTOR_H
#include <iterator> // reverse_iterator
#include <cassert>
#include <tvmet/tvmet.h>
#include <tvmet/TypePromotion.h>
#include <tvmet/CommaInitializer.h>
#include <tvmet/xpr/Vector.h>
namespace tvmet {
/* forwards */
template<class T, int Sz> class Vector;
/**
* \class VectorConstReference Vector.h "tvmet/Vector.h"
* \brief Const value iterator for ET
*/
template<class T, int Sz>
class VectorConstReference
: public TvmetBase< VectorConstReference<T, Sz> >
{
public: // types
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
public:
/** Dimensions. */
enum {
Size = Sz /**< The size of the vector. */
};
public:
/** Complexity counter. */
enum {
ops = Size
};
private:
VectorConstReference();
VectorConstReference& operator=(const VectorConstReference&);
public:
/** Constructor. */
explicit VectorConstReference(const Vector<T, Size>& rhs)
: m_data(rhs.data())
{ }
/** Constructor by a given memory pointer. */
explicit VectorConstReference(const_pointer data)
: m_data(data)
{ }
public: // access operators
/** access by index. */
value_type operator()(int i) const {
assert(i < Size);
return m_data[i];
}
public: // debugging Xpr parse tree
void print_xpr(std::ostream& os, int l=0) const {
os << IndentLevel(l)
<< "VectorConstReference[O=" << ops << "]<"
<< "T=" << typeid(T).name() << ">,"
<< std::endl;
}
private:
const_pointer _tvmet_restrict m_data;
};
/**
* \class Vector Vector.h "tvmet/Vector.h"
* \brief Compile time fixed length vector with evaluation on compile time.
*/
template<class T, int Sz>
class Vector
{
public:
/** Data type of the tvmet::Vector. */
typedef T value_type;
/** Reference type of the tvmet::Vector data elements. */
typedef T& reference;
/** const reference type of the tvmet::Vector data elements. */
typedef const T& const_reference;
/** STL iterator interface. */
typedef T* iterator;
/** STL const_iterator interface. */
typedef const T* const_iterator;
/** STL reverse iterator interface. */
typedef std::reverse_iterator<iterator> reverse_iterator;
/** STL const reverse iterator interface. */
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
public:
/** Dimensions. */
enum {
Size = Sz /**< The size of the vector. */
};
public:
/** Complexity counter. */
enum {
ops_assign = Size,
ops = ops_assign,
use_meta = ops < TVMET_COMPLEXITY_V_ASSIGN_TRIGGER ? true : false
};
public: // STL interface
/** STL iterator interface. */
iterator begin() { return m_data; }
/** STL iterator interface. */
iterator end() { return m_data + Size; }
/** STL const_iterator interface. */
const_iterator begin() const { return m_data; }
/** STL const_iterator interface. */
const_iterator end() const { return m_data + Size; }
/** STL reverse iterator interface reverse begin. */
reverse_iterator rbegin() { return reverse_iterator( end() ); }
/** STL const reverse iterator interface reverse begin. */
const_reverse_iterator rbegin() const {
return const_reverse_iterator( end() );
}
/** STL reverse iterator interface reverse end. */
reverse_iterator rend() { return reverse_iterator( begin() ); }
/** STL const reverse iterator interface reverse end. */
const_reverse_iterator rend() const {
return const_reverse_iterator( begin() );
}
/** STL vector front element. */
value_type front() { return m_data[0]; }
/** STL vector const front element. */
const_reference front() const { return m_data[0]; }
/** STL vector back element. */
value_type back() { return m_data[Size-1]; }
/** STL vector const back element. */
const_reference back() const { return m_data[Size-1]; }
/** STL vector empty() - returns allways false. */
static bool empty() { return false; }
/** The size of the vector. */
static int size() { return Size; }
/** STL vector max_size() - returns allways Size. */
static int max_size() { return Size; }
public:
/** Default Destructor */
~Vector() {}
/** Default Constructor. The allocated memory region isn't cleared. If you want
a clean use the constructor argument zero. */
explicit Vector() {}
/** Copy Constructor, not explicit! */
Vector(const Vector& rhs)
{
*this = XprVector<ConstReference, Size>(rhs.const_ref());
}
/**
* Constructor with STL iterator interface. The data will be copied into the
* vector self, there isn't any stored reference to the array pointer.
*/
template<class InputIterator>
explicit Vector(InputIterator first, InputIterator last)
{
assert( static_cast<int>(std::distance(first, last)) <= Size);
std::copy(first, last, m_data);
}
/**
* Constructor with STL iterator interface. The data will be copied into the
* vector self, there isn't any stored reference to the array pointer.
*/
template<class InputIterator>
explicit Vector(InputIterator first, int sz)
{
assert(sz <= Size);
std::copy(first, first + sz, m_data);
}
/** Constructor with initializer for all elements. */
explicit Vector(value_type rhs)
{
typedef XprLiteral<value_type> expr_type;
*this = XprVector<expr_type, Size>(expr_type(rhs));
}
/** Default Constructor with initializer list. */
explicit Vector(value_type x0, value_type x1)
{
TVMET_CT_CONDITION(2 <= Size, ArgumentList_is_too_long)
m_data[0] = x0; m_data[1] = x1;
}
/** Default Constructor with initializer list. */
explicit Vector(value_type x0, value_type x1, value_type x2)
{
TVMET_CT_CONDITION(3 <= Size, ArgumentList_is_too_long)
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2;
}
/** Default Constructor with initializer list. */
explicit Vector(value_type x0, value_type x1, value_type x2, value_type x3)
{
TVMET_CT_CONDITION(4 <= Size, ArgumentList_is_too_long)
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3;
}
/** Default Constructor with initializer list. */
explicit Vector(value_type x0, value_type x1, value_type x2, value_type x3,
value_type x4)
{
TVMET_CT_CONDITION(5 <= Size, ArgumentList_is_too_long)
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3; m_data[4] = x4;
}
/** Default Constructor with initializer list. */
explicit Vector(value_type x0, value_type x1, value_type x2, value_type x3,
value_type x4, value_type x5)
{
TVMET_CT_CONDITION(6 <= Size, ArgumentList_is_too_long)
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3; m_data[4] = x4;
m_data[5] = x5;
}
/** Default Constructor with initializer list. */
explicit Vector(value_type x0, value_type x1, value_type x2, value_type x3,
value_type x4, value_type x5, value_type x6)
{
TVMET_CT_CONDITION(7 <= Size, ArgumentList_is_too_long)
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3; m_data[4] = x4;
m_data[5] = x5; m_data[6] = x6;
}
/** Default Constructor with initializer list. */
explicit Vector(value_type x0, value_type x1, value_type x2, value_type x3,
value_type x4, value_type x5, value_type x6, value_type x7)
{
TVMET_CT_CONDITION(8 <= Size, ArgumentList_is_too_long)
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3; m_data[4] = x4;
m_data[5] = x5; m_data[6] = x6; m_data[7] = x7;
}
/** Default Constructor with initializer list. */
explicit Vector(value_type x0, value_type x1, value_type x2, value_type x3,
value_type x4, value_type x5, value_type x6, value_type x7,
value_type x8)
{
TVMET_CT_CONDITION(9 <= Size, ArgumentList_is_too_long)
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3; m_data[4] = x4;
m_data[5] = x5; m_data[6] = x6; m_data[7] = x7; m_data[8] = x8;
}
/** Default Constructor with initializer list. */
explicit Vector(value_type x0, value_type x1, value_type x2, value_type x3,
value_type x4, value_type x5, value_type x6, value_type x7,
value_type x8, value_type x9)
{
TVMET_CT_CONDITION(10 <= Size, ArgumentList_is_too_long)
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3; m_data[4] = x4;
m_data[5] = x5; m_data[6] = x6; m_data[7] = x7; m_data[8] = x8; m_data[9] = x9;
}
/** Construct a vector by expression. */
template <class E>
explicit Vector(const XprVector<E, Size>& e)
{
*this = e;
}
/** Assign a value_type on array, this can be used for a single value
or a comma separeted list of values. */
CommaInitializer<Vector, Size> operator=(value_type rhs) {
return CommaInitializer<Vector, Size>(*this, rhs);
}
public: // access operators
value_type* _tvmet_restrict data() { return m_data; }
const value_type* _tvmet_restrict data() const { return m_data; }
public: // index access operators
value_type& _tvmet_restrict operator()(int i) {
// Note: g++-2.95.3 does have problems on typedef reference
assert(i < Size);
return m_data[i];
}
value_type operator()(int i) const {
assert(i < Size);
return m_data[i];
}
value_type& _tvmet_restrict operator[](int i) {
// Note: g++-2.95.3 does have problems on typedef reference
return this->operator()(i);
}
value_type operator[](int i) const {
return this->operator()(i);
}
public: // ET interface
typedef VectorConstReference<T, Size> ConstReference;
/** Return a const Reference of the internal data */
ConstReference const_ref() const { return ConstReference(*this); }
/** Return the vector as const expression. */
XprVector<ConstReference, Size> as_expr() const {
return XprVector<ConstReference, Size>(this->const_ref());
}
private:
/** Wrapper for meta assign. */
template<class Dest, class Src, class Assign>
static inline
void do_assign(dispatch<true>, Dest& dest, const Src& src, const Assign& assign_fn) {
meta::Vector<Size, 0>::assign(dest, src, assign_fn);
}
/** Wrapper for loop assign. */
template<class Dest, class Src, class Assign>
static inline
void do_assign(dispatch<false>, Dest& dest, const Src& src, const Assign& assign_fn) {
loop::Vector<Size>::assign(dest, src, assign_fn);
}
public:
/** assign this to a vector expression using the functional assign_fn. */
template<class T2, class Assign>
void assign_to(Vector<T2, Size>& dest, const Assign& assign_fn) const {
do_assign(dispatch<use_meta>(), dest, *this, assign_fn);
}
public: // assign operations
/** assign a given Vector element wise to this vector.
The operator=(const Vector&) is compiler generated. */
template<class T2>
Vector& operator=(const Vector<T2, Size>& rhs) {
rhs.assign_to(*this, Fcnl_assign<value_type, T2>());
return *this;
}
/** assign a given XprVector element wise to this vector. */
template<class E>
Vector& operator=(const XprVector<E, Size>& rhs) {
rhs.assign_to(*this, Fcnl_assign<value_type, typename E::value_type>());
return *this;
}
private:
template<class Obj, int LEN> friend class CommaInitializer;
/** This is a helper for assigning a comma separated initializer
list. It's equal to Vector& operator=(value_type) which does
replace it. */
Vector& assign_value(value_type rhs) {
typedef XprLiteral<value_type> expr_type;
*this = XprVector<expr_type, Size>(expr_type(rhs));
return *this;
}
public: // math operators with scalars
// NOTE: this meaning is clear - element wise ops even if not in ns element_wise
Vector& operator+=(value_type) _tvmet_always_inline;
Vector& operator-=(value_type) _tvmet_always_inline;
Vector& operator*=(value_type) _tvmet_always_inline;
Vector& operator/=(value_type) _tvmet_always_inline;
Vector& operator%=(int) _tvmet_always_inline;
Vector& operator^=(int) _tvmet_always_inline;
Vector& operator&=(int) _tvmet_always_inline;
Vector& operator|=(int) _tvmet_always_inline;
Vector& operator<<=(int) _tvmet_always_inline;
Vector& operator>>=(int) _tvmet_always_inline;
public: // math assign operators with vectors
// NOTE: access using the operators in ns element_wise, since that's what is does
template <class T2> Vector& M_add_eq(const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& M_sub_eq(const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& M_mul_eq(const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& M_div_eq(const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& M_mod_eq(const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& M_xor_eq(const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& M_and_eq(const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& M_or_eq (const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& M_shl_eq(const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& M_shr_eq(const Vector<T2, Size>&) _tvmet_always_inline;
public: // math operators with expressions
// NOTE: access using the operators in ns element_wise, since that's what is does
template <class E> Vector& M_add_eq(const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& M_sub_eq(const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& M_mul_eq(const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& M_div_eq(const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& M_mod_eq(const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& M_xor_eq(const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& M_and_eq(const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& M_or_eq (const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& M_shl_eq(const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& M_shr_eq(const XprVector<E, Size>&) _tvmet_always_inline;
public: // aliased math operators with expressions, used with proxy
template <class T2> Vector& alias_assign(const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& alias_add_eq(const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& alias_sub_eq(const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& alias_mul_eq(const Vector<T2, Size>&) _tvmet_always_inline;
template <class T2> Vector& alias_div_eq(const Vector<T2, Size>&) _tvmet_always_inline;
template <class E> Vector& alias_assign(const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& alias_add_eq(const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& alias_sub_eq(const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& alias_mul_eq(const XprVector<E, Size>&) _tvmet_always_inline;
template <class E> Vector& alias_div_eq(const XprVector<E, Size>&) _tvmet_always_inline;
public: // io
/** Structure for info printing as Vector<T, Size>. */
struct Info : public TvmetBase<Info> {
std::ostream& print_xpr(std::ostream& os) const {
os << "Vector<T=" << typeid(value_type).name()
<< ", Sz=" << Size << ">";
return os;
}
};
/** Get an info object of this vector. */
static Info info() { return Info(); }
/** Member function for expression level printing. */
std::ostream& print_xpr(std::ostream& os, int l=0) const;
/** Member function for printing internal data. */
std::ostream& print_on(std::ostream& os) const;
private:
/** The data of vector self. */
value_type m_data[Size];
};
typedef Vector<int, 2> Vector2i;
typedef Vector<int, 3> Vector3i;
typedef Vector<int, 4> Vector4i;
typedef Vector<float, 2> Vector2f;
typedef Vector<float, 3> Vector3f;
typedef Vector<float, 4> Vector4f;
typedef Vector<double, 2> Vector2d;
typedef Vector<double, 3> Vector3d;
typedef Vector<double, 4> Vector4d;
} // namespace tvmet
#include <tvmet/VectorImpl.h>
#include <tvmet/VectorFunctions.h>
#include <tvmet/VectorUnaryFunctions.h>
#include <tvmet/VectorOperators.h>
#include <tvmet/VectorEval.h>
#include <tvmet/AliasProxy.h>
#endif // TVMET_VECTOR_H
// Local Variables:
// mode:C++
// End: