- Replace internal::scalar_product_traits<A,B> by Eigen::ScalarBinaryOpTraits<A,B,OP>
- Remove the "functor_is_product_like" helper (was pretty ugly)
- Currently, OP is not used, but it is available to the user for fine grained tuning
- Currently, only the following operators have been generalized: *,/,+,-,=,*=,/=,+=,-=
- TODO: generalize all other binray operators (comparisons,pow,etc.)
- TODO: handle "scalar op array" operators (currently only * is handled)
- TODO: move the handling of the "void" scalar type to ScalarBinaryOpTraits
* Get rid of code-duplication for real vs. complex matrices.
* Fix flipped arguments to select.
* Make the condition estimation functions free functions.
* Use Vector::Unit() to generate canonical unit vectors.
* Misc. cleanup.
* get rid of BlockReturnType: it was not needed, and code was not always using it consistently anyway
* add topRows(), leftCols(), bottomRows(), rightCols()
* add corners unit-test covering all of that
* adapt docs, expand "porting from eigen 2 to 3"
* adapt Eigen2Support
- Updated unit tests to check above constructor.
- In the compute() method of decompositions: Made temporary matrices/vectors class members to avoid heap allocations during compute() (when dynamic matrices are used, of course).
These changes can speed up decomposition computation time when a solver instance is used to solve multiple same-sized problems. An added benefit is that the compute() method can now be invoked in contexts were heap allocations are forbidden, such as in real-time control loops.
CAVEAT: Not all of the decompositions in the Eigenvalues module have a heap-allocation-free compute() method. A future patch may address this issue, but some required API changes need to be incorporated first.
* adapt Eigenvalues module to the new rule that the RowMajorBit must have the proper value for vectors
* Fix RowMajorBit in ei_traits<ProductBase>
* Fix vectorizability logic in CoeffBasedProduct
NOTE: The ComplexEigenSolver class currently _does_ allocate (line 135 of Eigenvalues/ComplexEigenSolver.h), but the reason appears to be in the implementation of matrix-matrix products, and not in the decomposition itself.
The nomalloc unit test has been extended to verify that decompositions do not allocate when max sizes are specified. There are currently two workarounds to prevent the test from failing (see comments in test/nomalloc.cpp), both of which are related to matrix products that allocate on the stack.