Doc: difference between array and matrix cosine etc (bug #830)
This commit is contained in:
		
							parent
							
								
									25bceefb4e
								
							
						
					
					
						commit
						abb33258ce
					
				| @ -29,6 +29,9 @@ abs2() const | ||||
| } | ||||
| 
 | ||||
| /** \returns an expression of the coefficient-wise exponential of *this.
 | ||||
|   * | ||||
|   * This function computes the coefficient-wise exponential. The function MatrixBase::exp() in the | ||||
|   * unsupported module MatrixFunctions computes the matrix exponential. | ||||
|   * | ||||
|   * Example: \include Cwise_exp.cpp | ||||
|   * Output: \verbinclude Cwise_exp.out | ||||
| @ -43,6 +46,9 @@ exp() const | ||||
| } | ||||
| 
 | ||||
| /** \returns an expression of the coefficient-wise logarithm of *this.
 | ||||
|   * | ||||
|   * This function computes the coefficient-wise logarithm. The function MatrixBase::log() in the | ||||
|   * unsupported module MatrixFunctions computes the matrix logarithm. | ||||
|   * | ||||
|   * Example: \include Cwise_log.cpp | ||||
|   * Output: \verbinclude Cwise_log.out | ||||
| @ -57,6 +63,9 @@ log() const | ||||
| } | ||||
| 
 | ||||
| /** \returns an expression of the coefficient-wise square root of *this.
 | ||||
|   * | ||||
|   * This function computes the coefficient-wise square root. The function MatrixBase::sqrt() in the | ||||
|   * unsupported module MatrixFunctions computes the matrix square root. | ||||
|   * | ||||
|   * Example: \include Cwise_sqrt.cpp | ||||
|   * Output: \verbinclude Cwise_sqrt.out | ||||
| @ -71,6 +80,9 @@ sqrt() const | ||||
| } | ||||
| 
 | ||||
| /** \returns an expression of the coefficient-wise cosine of *this.
 | ||||
|   * | ||||
|   * This function computes the coefficient-wise cosine. The function MatrixBase::cos() in the | ||||
|   * unsupported module MatrixFunctions computes the matrix cosine. | ||||
|   * | ||||
|   * Example: \include Cwise_cos.cpp | ||||
|   * Output: \verbinclude Cwise_cos.out | ||||
| @ -86,6 +98,9 @@ cos() const | ||||
| 
 | ||||
| 
 | ||||
| /** \returns an expression of the coefficient-wise sine of *this.
 | ||||
|   * | ||||
|   * This function computes the coefficient-wise sine. The function MatrixBase::sin() in the | ||||
|   * unsupported module MatrixFunctions computes the matrix sine. | ||||
|   * | ||||
|   * Example: \include Cwise_sin.cpp | ||||
|   * Output: \verbinclude Cwise_sin.out | ||||
| @ -155,6 +170,9 @@ atan() const | ||||
| } | ||||
| 
 | ||||
| /** \returns an expression of the coefficient-wise power of *this to the given exponent.
 | ||||
|   * | ||||
|   * This function computes the coefficient-wise power. The function MatrixBase::pow() in the | ||||
|   * unsupported module MatrixFunctions computes the matrix power. | ||||
|   * | ||||
|   * Example: \include Cwise_pow.cpp | ||||
|   * Output: \verbinclude Cwise_pow.out | ||||
|  | ||||
| @ -82,7 +82,9 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const | ||||
| \param[in]  M  a square matrix. | ||||
| \returns  expression representing \f$ \cos(M) \f$. | ||||
| 
 | ||||
| This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos(). | ||||
| This function computes the matrix cosine. Use ArrayBase::cos() for computing the entry-wise cosine. | ||||
| 
 | ||||
| The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos(). | ||||
| 
 | ||||
| \sa \ref matrixbase_sin "sin()" for an example. | ||||
| 
 | ||||
| @ -123,6 +125,9 @@ differential equations: the solution of \f$ y' = My \f$ with the | ||||
| initial condition \f$ y(0) = y_0 \f$ is given by | ||||
| \f$ y(t) = \exp(M) y_0 \f$. | ||||
| 
 | ||||
| The matrix exponential is different from applying the exp function to all the entries in the matrix. | ||||
| Use ArrayBase::exp() if you want to do the latter. | ||||
| 
 | ||||
| The cost of the computation is approximately \f$ 20 n^3 \f$ for | ||||
| matrices of size \f$ n \f$. The number 20 depends weakly on the | ||||
| norm of the matrix. | ||||
| @ -177,6 +182,9 @@ the scalar logarithm, the equation \f$ \exp(X) = M \f$ may have | ||||
| multiple solutions; this function returns a matrix whose eigenvalues | ||||
| have imaginary part in the interval \f$ (-\pi,\pi] \f$. | ||||
| 
 | ||||
| The matrix logarithm is different from applying the log function to all the entries in the matrix. | ||||
| Use ArrayBase::log() if you want to do the latter. | ||||
| 
 | ||||
| In the real case, the matrix \f$ M \f$ should be invertible and | ||||
| it should have no eigenvalues which are real and negative (pairs of | ||||
| complex conjugate eigenvalues are allowed). In the complex case, it | ||||
| @ -232,7 +240,8 @@ const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) con | ||||
| 
 | ||||
| The matrix power \f$ M^p \f$ is defined as \f$ \exp(p \log(M)) \f$, | ||||
| where exp denotes the matrix exponential, and log denotes the matrix | ||||
| logarithm. | ||||
| logarithm. This is different from raising all the entries in the matrix | ||||
| to the p-th power. Use ArrayBase::pow() if you want to do the latter. | ||||
| 
 | ||||
| If \p p is complex, the scalar type of \p M should be the type of \p | ||||
| p . \f$ M^p \f$ simply evaluates into \f$ \exp(p \log(M)) \f$. | ||||
| @ -391,7 +400,9 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const | ||||
| \param[in]  M  a square matrix. | ||||
| \returns  expression representing \f$ \sin(M) \f$. | ||||
| 
 | ||||
| This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin(). | ||||
| This function computes the matrix sine. Use ArrayBase::sin() for computing the entry-wise sine. | ||||
| 
 | ||||
| The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin(). | ||||
| 
 | ||||
| Example: \include MatrixSine.cpp | ||||
| Output: \verbinclude MatrixSine.out | ||||
| @ -428,7 +439,9 @@ const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const | ||||
| 
 | ||||
| The matrix square root of \f$ M \f$ is the matrix \f$ M^{1/2} \f$ | ||||
| whose square is the original matrix; so if \f$ S = M^{1/2} \f$ then | ||||
| \f$ S^2 = M \f$.  | ||||
| \f$ S^2 = M \f$. This is different from taking the square root of all | ||||
| the entries in the matrix; use ArrayBase::sqrt() if you want to do the | ||||
| latter. | ||||
| 
 | ||||
| In the <b>real case</b>, the matrix \f$ M \f$ should be invertible and | ||||
| it should have no eigenvalues which are real and negative (pairs of | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user
	 Jitse Niesen
						Jitse Niesen