Update utility for experimenting with 3x3 eigenvalues
This commit is contained in:
		
							parent
							
								
									8f031a3cee
								
							
						
					
					
						commit
						913a61870d
					
				| @ -50,7 +50,7 @@ inline void computeRoots(const Matrix& m, Roots& roots) | ||||
| { | ||||
|   typedef typename Matrix::Scalar Scalar; | ||||
|   const Scalar s_inv3 = 1.0/3.0; | ||||
|   const Scalar s_sqrt3 = internal::sqrt(Scalar(3.0)); | ||||
|   const Scalar s_sqrt3 = std::sqrt(Scalar(3.0)); | ||||
| 
 | ||||
|   // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The
 | ||||
|   // eigenvalues are the roots to this equation, all guaranteed to be
 | ||||
| @ -73,23 +73,13 @@ inline void computeRoots(const Matrix& m, Roots& roots) | ||||
|     q = Scalar(0); | ||||
| 
 | ||||
|   // Compute the eigenvalues by solving for the roots of the polynomial.
 | ||||
|   Scalar rho = internal::sqrt(-a_over_3); | ||||
|   Scalar theta = std::atan2(internal::sqrt(-q),half_b)*s_inv3; | ||||
|   Scalar cos_theta = internal::cos(theta); | ||||
|   Scalar sin_theta = internal::sin(theta); | ||||
|   roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta; | ||||
|   roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); | ||||
|   roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); | ||||
| 
 | ||||
|   // Sort in increasing order.
 | ||||
|   if (roots(0) >= roots(1)) | ||||
|     std::swap(roots(0),roots(1)); | ||||
|   if (roots(1) >= roots(2)) | ||||
|   { | ||||
|     std::swap(roots(1),roots(2)); | ||||
|     if (roots(0) >= roots(1)) | ||||
|       std::swap(roots(0),roots(1)); | ||||
|   } | ||||
|   Scalar rho = std::sqrt(-a_over_3); | ||||
|   Scalar theta = std::atan2(std::sqrt(-q),half_b)*s_inv3; | ||||
|   Scalar cos_theta = std::cos(theta); | ||||
|   Scalar sin_theta = std::sin(theta); | ||||
|   roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta; | ||||
|   roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); | ||||
|   roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); | ||||
| } | ||||
| 
 | ||||
| template<typename Matrix, typename Vector> | ||||
| @ -99,9 +89,12 @@ void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals) | ||||
|   // Scale the matrix so its entries are in [-1,1].  The scaling is applied
 | ||||
|   // only when at least one matrix entry has magnitude larger than 1.
 | ||||
| 
 | ||||
|   Scalar scale = mat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff(); | ||||
|   Scalar shift = mat.trace()/3; | ||||
|   Matrix scaledMat = mat; | ||||
|   scaledMat.diagonal().array() -= shift; | ||||
|   Scalar scale = scaledMat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff(); | ||||
|   scale = std::max(scale,Scalar(1)); | ||||
|   Matrix scaledMat = mat / scale; | ||||
|   scaledMat/=scale; | ||||
| 
 | ||||
|   // Compute the eigenvalues
 | ||||
| //   scaledMat.setZero();
 | ||||
| @ -166,6 +159,7 @@ void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals) | ||||
|    | ||||
|   // Rescale back to the original size.
 | ||||
|   evals *= scale; | ||||
|   evals.array()+=shift; | ||||
| } | ||||
| 
 | ||||
| int main() | ||||
| @ -173,24 +167,29 @@ int main() | ||||
|   BenchTimer t; | ||||
|   int tries = 10; | ||||
|   int rep = 400000; | ||||
|   typedef Matrix3f Mat; | ||||
|   typedef Vector3f Vec; | ||||
|   typedef Matrix3d Mat; | ||||
|   typedef Vector3d Vec; | ||||
|   Mat A = Mat::Random(3,3); | ||||
|   A = A.adjoint() * A; | ||||
| //   Mat Q = A.householderQr().householderQ();
 | ||||
| //   A = Q * Vec(2.2424567,2.2424566,7.454353).asDiagonal() * Q.transpose();
 | ||||
| 
 | ||||
|   SelfAdjointEigenSolver<Mat> eig(A); | ||||
|   BENCH(t, tries, rep, eig.compute(A)); | ||||
|   std::cout << "Eigen:  " << t.best() << "s\n"; | ||||
|   std::cout << "Eigen iterative:  " << t.best() << "s\n"; | ||||
|    | ||||
|   BENCH(t, tries, rep, eig.computeDirect(A)); | ||||
|   std::cout << "Eigen direct   :  " << t.best() << "s\n"; | ||||
| 
 | ||||
|   Mat evecs; | ||||
|   Vec evals; | ||||
|   BENCH(t, tries, rep, eigen33(A,evecs,evals)); | ||||
|   std::cout << "Direct: " << t.best() << "s\n\n"; | ||||
| 
 | ||||
|   std::cerr << "Eigenvalue/eigenvector diffs:\n"; | ||||
|   std::cerr << (evals - eig.eigenvalues()).transpose() << "\n"; | ||||
|   for(int k=0;k<3;++k) | ||||
|     if(evecs.col(k).dot(eig.eigenvectors().col(k))<0) | ||||
|       evecs.col(k) = -evecs.col(k); | ||||
|   std::cerr << evecs - eig.eigenvectors() << "\n\n"; | ||||
| //   std::cerr << "Eigenvalue/eigenvector diffs:\n";
 | ||||
| //   std::cerr << (evals - eig.eigenvalues()).transpose() << "\n";
 | ||||
| //   for(int k=0;k<3;++k)
 | ||||
| //     if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
 | ||||
| //       evecs.col(k) = -evecs.col(k);
 | ||||
| //   std::cerr << evecs - eig.eigenvectors() << "\n\n";
 | ||||
| } | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user
	 Gael Guennebaud
						Gael Guennebaud