|
|
|
|
@ -13,19 +13,35 @@
|
|
|
|
|
namespace Eigen {
|
|
|
|
|
|
|
|
|
|
namespace internal {
|
|
|
|
|
template <typename Decomposition, bool IsSelfAdjoint, bool IsComplex>
|
|
|
|
|
struct EstimateInverseMatrixL1NormImpl {};
|
|
|
|
|
template <typename MatrixType>
|
|
|
|
|
inline typename MatrixType::RealScalar MatrixL1Norm(const MatrixType& matrix) {
|
|
|
|
|
return matrix.cwiseAbs().colwise().sum().maxCoeff();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename Vector>
|
|
|
|
|
inline typename Vector::RealScalar VectorL1Norm(const Vector& v) {
|
|
|
|
|
return v.template lpNorm<1>();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename Vector, typename RealVector, bool IsComplex>
|
|
|
|
|
struct SignOrUnity {
|
|
|
|
|
static inline Vector run(const Vector& v) {
|
|
|
|
|
const RealVector v_abs = v.cwiseAbs();
|
|
|
|
|
return (v_abs.array() == 0).select(Vector::Ones(v.size()), v.cwiseQuotient(v_abs));
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Partial specialization to avoid elementwise division for real vectors.
|
|
|
|
|
template <typename Vector>
|
|
|
|
|
struct SignOrUnity<Vector, Vector, false> {
|
|
|
|
|
static inline Vector run(const Vector& v) {
|
|
|
|
|
return (v.array() < 0).select(-Vector::Ones(v.size()), Vector::Ones(v.size()));
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
} // namespace internal
|
|
|
|
|
|
|
|
|
|
template <typename Decomposition, bool IsSelfAdjoint = false>
|
|
|
|
|
class ConditionEstimator {
|
|
|
|
|
public:
|
|
|
|
|
typedef typename Decomposition::MatrixType MatrixType;
|
|
|
|
|
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
|
|
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
|
typedef typename internal::plain_col_type<MatrixType>::type Vector;
|
|
|
|
|
|
|
|
|
|
/** \class ConditionEstimator
|
|
|
|
|
/** \class ConditionEstimator
|
|
|
|
|
* \ingroup Core_Module
|
|
|
|
|
*
|
|
|
|
|
* \brief Condition number estimator.
|
|
|
|
|
@ -41,265 +57,148 @@ class ConditionEstimator {
|
|
|
|
|
*
|
|
|
|
|
* \sa FullPivLU, PartialPivLU.
|
|
|
|
|
*/
|
|
|
|
|
static RealScalar rcond(const MatrixType& matrix, const Decomposition& dec) {
|
|
|
|
|
eigen_assert(matrix.rows() == dec.rows());
|
|
|
|
|
eigen_assert(matrix.cols() == dec.cols());
|
|
|
|
|
eigen_assert(matrix.rows() == matrix.cols());
|
|
|
|
|
if (dec.rows() == 0) {
|
|
|
|
|
return RealScalar(1);
|
|
|
|
|
}
|
|
|
|
|
return rcond(MatrixL1Norm(matrix), dec);
|
|
|
|
|
template <typename Decomposition>
|
|
|
|
|
typename Decomposition::RealScalar ReciprocalConditionNumberEstimate(
|
|
|
|
|
const typename Decomposition::MatrixType& matrix,
|
|
|
|
|
const Decomposition& dec) {
|
|
|
|
|
eigen_assert(matrix.rows() == dec.rows());
|
|
|
|
|
eigen_assert(matrix.cols() == dec.cols());
|
|
|
|
|
eigen_assert(matrix.rows() == matrix.cols());
|
|
|
|
|
if (dec.rows() == 0) {
|
|
|
|
|
return Decomposition::RealScalar(1);
|
|
|
|
|
}
|
|
|
|
|
return ReciprocalConditionNumberEstimate(MatrixL1Norm(matrix), dec);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/** \class ConditionEstimator
|
|
|
|
|
* \ingroup Core_Module
|
|
|
|
|
*
|
|
|
|
|
* \brief Condition number estimator.
|
|
|
|
|
*
|
|
|
|
|
* Computing a decomposition of a dense matrix takes O(n^3) operations, while
|
|
|
|
|
* this method estimates the condition number quickly and reliably in O(n^2)
|
|
|
|
|
* operations.
|
|
|
|
|
*
|
|
|
|
|
* \returns an estimate of the reciprocal condition number
|
|
|
|
|
* (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and
|
|
|
|
|
* its decomposition. Supports the following decompositions: FullPivLU,
|
|
|
|
|
* PartialPivLU.
|
|
|
|
|
*
|
|
|
|
|
* \sa FullPivLU, PartialPivLU.
|
|
|
|
|
*/
|
|
|
|
|
static RealScalar rcond(RealScalar matrix_norm, const Decomposition& dec) {
|
|
|
|
|
eigen_assert(dec.rows() == dec.cols());
|
|
|
|
|
if (dec.rows() == 0) {
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
if (matrix_norm == 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
const RealScalar inverse_matrix_norm = EstimateInverseMatrixL1Norm(dec);
|
|
|
|
|
return inverse_matrix_norm == 0 ? 0
|
|
|
|
|
: (1 / inverse_matrix_norm) / matrix_norm;
|
|
|
|
|
/** \class ConditionEstimator
|
|
|
|
|
* \ingroup Core_Module
|
|
|
|
|
*
|
|
|
|
|
* \brief Condition number estimator.
|
|
|
|
|
*
|
|
|
|
|
* Computing a decomposition of a dense matrix takes O(n^3) operations, while
|
|
|
|
|
* this method estimates the condition number quickly and reliably in O(n^2)
|
|
|
|
|
* operations.
|
|
|
|
|
*
|
|
|
|
|
* \returns an estimate of the reciprocal condition number
|
|
|
|
|
* (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and
|
|
|
|
|
* its decomposition. Supports the following decompositions: FullPivLU,
|
|
|
|
|
* PartialPivLU.
|
|
|
|
|
*
|
|
|
|
|
* \sa FullPivLU, PartialPivLU.
|
|
|
|
|
*/
|
|
|
|
|
template <typename Decomposition>
|
|
|
|
|
typename Decomposition::RealScalar ReciprocalConditionNumberEstimate(
|
|
|
|
|
typename Decomposition::RealScalar matrix_norm, const Decomposition& dec) {
|
|
|
|
|
eigen_assert(dec.rows() == dec.cols());
|
|
|
|
|
if (dec.rows() == 0) {
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* \returns an estimate of ||inv(matrix)||_1 given a decomposition of
|
|
|
|
|
* matrix that implements .solve() and .adjoint().solve() methods.
|
|
|
|
|
*
|
|
|
|
|
* The method implements Algorithms 4.1 and 5.1 from
|
|
|
|
|
* http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf
|
|
|
|
|
* which also forms the basis for the condition number estimators in
|
|
|
|
|
* LAPACK. Since at most 10 calls to the solve method of dec are
|
|
|
|
|
* performed, the total cost is O(dims^2), as opposed to O(dims^3)
|
|
|
|
|
* needed to compute the inverse matrix explicitly.
|
|
|
|
|
*
|
|
|
|
|
* The most common usage is in estimating the condition number
|
|
|
|
|
* ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be
|
|
|
|
|
* computed directly in O(n^2) operations.
|
|
|
|
|
*/
|
|
|
|
|
static RealScalar EstimateInverseMatrixL1Norm(const Decomposition& dec) {
|
|
|
|
|
eigen_assert(dec.rows() == dec.cols());
|
|
|
|
|
if (dec.rows() == 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
return internal::EstimateInverseMatrixL1NormImpl<
|
|
|
|
|
Decomposition, IsSelfAdjoint,
|
|
|
|
|
NumTraits<Scalar>::IsComplex != 0>::compute(dec);
|
|
|
|
|
if (matrix_norm == 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
const typename Decomposition::RealScalar inverse_matrix_norm = InverseMatrixL1NormEstimate(dec);
|
|
|
|
|
return inverse_matrix_norm == 0 ? 0 : (1 / inverse_matrix_norm) / matrix_norm;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* \returns the induced matrix l1-norm
|
|
|
|
|
* ||matrix||_1 = sup ||matrix * v||_1 / ||v||_1, which is equal to
|
|
|
|
|
* the greatest absolute column sum.
|
|
|
|
|
*/
|
|
|
|
|
static inline Scalar MatrixL1Norm(const MatrixType& matrix) {
|
|
|
|
|
return matrix.cwiseAbs().colwise().sum().maxCoeff();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
|
|
template <typename Decomposition, typename Vector, bool IsSelfAdjoint = false>
|
|
|
|
|
struct solve_helper {
|
|
|
|
|
static inline Vector solve_adjoint(const Decomposition& dec,
|
|
|
|
|
const Vector& v) {
|
|
|
|
|
return dec.adjoint().solve(v);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Partial specialization for self_adjoint matrices.
|
|
|
|
|
template <typename Decomposition, typename Vector>
|
|
|
|
|
struct solve_helper<Decomposition, Vector, true> {
|
|
|
|
|
static inline Vector solve_adjoint(const Decomposition& dec,
|
|
|
|
|
const Vector& v) {
|
|
|
|
|
return dec.solve(v);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Partial specialization for real matrices.
|
|
|
|
|
template <typename Decomposition, bool IsSelfAdjoint>
|
|
|
|
|
struct EstimateInverseMatrixL1NormImpl<Decomposition, IsSelfAdjoint, false> {
|
|
|
|
|
/**
|
|
|
|
|
* \returns an estimate of ||inv(matrix)||_1 given a decomposition of
|
|
|
|
|
* matrix that implements .solve() and .adjoint().solve() methods.
|
|
|
|
|
*
|
|
|
|
|
* The method implements Algorithms 4.1 and 5.1 from
|
|
|
|
|
* http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf
|
|
|
|
|
* which also forms the basis for the condition number estimators in
|
|
|
|
|
* LAPACK. Since at most 10 calls to the solve method of dec are
|
|
|
|
|
* performed, the total cost is O(dims^2), as opposed to O(dims^3)
|
|
|
|
|
* needed to compute the inverse matrix explicitly.
|
|
|
|
|
*
|
|
|
|
|
* The most common usage is in estimating the condition number
|
|
|
|
|
* ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be
|
|
|
|
|
* computed directly in O(n^2) operations.
|
|
|
|
|
*/
|
|
|
|
|
template <typename Decomposition>
|
|
|
|
|
typename Decomposition::RealScalar InverseMatrixL1NormEstimate(
|
|
|
|
|
const Decomposition& dec) {
|
|
|
|
|
typedef typename Decomposition::MatrixType MatrixType;
|
|
|
|
|
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
|
|
|
|
typedef typename Decomposition::Scalar Scalar;
|
|
|
|
|
typedef typename Decomposition::RealScalar RealScalar;
|
|
|
|
|
typedef typename internal::plain_col_type<MatrixType>::type Vector;
|
|
|
|
|
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVector;
|
|
|
|
|
const bool is_complex = (NumTraits<Scalar>::IsComplex != 0);
|
|
|
|
|
|
|
|
|
|
// Shorthand for vector L1 norm in Eigen.
|
|
|
|
|
static inline Scalar VectorL1Norm(const Vector& v) {
|
|
|
|
|
return v.template lpNorm<1>();
|
|
|
|
|
eigen_assert(dec.rows() == dec.cols());
|
|
|
|
|
const int n = dec.rows();
|
|
|
|
|
if (n == 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
Vector v = Vector::Ones(n) / n;
|
|
|
|
|
v = dec.solve(v);
|
|
|
|
|
|
|
|
|
|
static inline Scalar compute(const Decomposition& dec) {
|
|
|
|
|
const int n = dec.rows();
|
|
|
|
|
const Vector plus = Vector::Ones(n);
|
|
|
|
|
Vector v = plus / n;
|
|
|
|
|
v = dec.solve(v);
|
|
|
|
|
Scalar lower_bound = VectorL1Norm(v);
|
|
|
|
|
if (n == 1) {
|
|
|
|
|
return lower_bound;
|
|
|
|
|
}
|
|
|
|
|
// lower_bound is a lower bound on
|
|
|
|
|
// ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1
|
|
|
|
|
// and is the objective maximized by the ("super-") gradient ascent
|
|
|
|
|
// algorithm.
|
|
|
|
|
// Basic idea: We know that the optimum is achieved at one of the simplices
|
|
|
|
|
// v = e_i, so in each iteration we follow a super-gradient to move towards
|
|
|
|
|
// the optimal one.
|
|
|
|
|
Scalar old_lower_bound = lower_bound;
|
|
|
|
|
const Vector minus = -Vector::Ones(n);
|
|
|
|
|
Vector sign_vector = (v.cwiseAbs().array() == 0).select(plus, minus);
|
|
|
|
|
Vector old_sign_vector = sign_vector;
|
|
|
|
|
int v_max_abs_index = -1;
|
|
|
|
|
int old_v_max_abs_index = v_max_abs_index;
|
|
|
|
|
for (int k = 0; k < 4; ++k) {
|
|
|
|
|
// argmax |inv(matrix)^T * sign_vector|
|
|
|
|
|
v = solve_helper<Decomposition, Vector, IsSelfAdjoint>::solve_adjoint(dec, sign_vector);
|
|
|
|
|
v.cwiseAbs().maxCoeff(&v_max_abs_index);
|
|
|
|
|
if (v_max_abs_index == old_v_max_abs_index) {
|
|
|
|
|
// Break if the solution stagnated.
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
// Move to the new simplex e_j, where j = v_max_abs_index.
|
|
|
|
|
v.setZero();
|
|
|
|
|
v[v_max_abs_index] = 1;
|
|
|
|
|
v = dec.solve(v); // v = inv(matrix) * e_j.
|
|
|
|
|
lower_bound = VectorL1Norm(v);
|
|
|
|
|
if (lower_bound <= old_lower_bound) {
|
|
|
|
|
// Break if the gradient step did not increase the lower_bound.
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
sign_vector = (v.array() < 0).select(plus, minus);
|
|
|
|
|
// lower_bound is a lower bound on
|
|
|
|
|
// ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1
|
|
|
|
|
// and is the objective maximized by the ("super-") gradient ascent
|
|
|
|
|
// algorithm below.
|
|
|
|
|
RealScalar lower_bound = internal::VectorL1Norm(v);
|
|
|
|
|
if (n == 1) {
|
|
|
|
|
return lower_bound;
|
|
|
|
|
}
|
|
|
|
|
// Gradient ascent algorithm follows: We know that the optimum is achieved at
|
|
|
|
|
// one of the simplices v = e_i, so in each iteration we follow a
|
|
|
|
|
// super-gradient to move towards the optimal one.
|
|
|
|
|
RealScalar old_lower_bound = lower_bound;
|
|
|
|
|
Vector sign_vector(n);
|
|
|
|
|
Vector old_sign_vector;
|
|
|
|
|
int v_max_abs_index = -1;
|
|
|
|
|
int old_v_max_abs_index = v_max_abs_index;
|
|
|
|
|
for (int k = 0; k < 4; ++k) {
|
|
|
|
|
sign_vector = internal::SignOrUnity<Vector, RealVector, is_complex>::run(v);
|
|
|
|
|
if (k > 0 && !is_complex) {
|
|
|
|
|
if (sign_vector == old_sign_vector) {
|
|
|
|
|
// Break if the solution stagnated.
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// v_max_abs_index = argmax |real( inv(matrix)^T * sign_vector )|
|
|
|
|
|
v = dec.adjoint().solve(sign_vector);
|
|
|
|
|
v.real().cwiseAbs().maxCoeff(&v_max_abs_index);
|
|
|
|
|
if (v_max_abs_index == old_v_max_abs_index) {
|
|
|
|
|
// Break if the solution stagnated.
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
// Move to the new simplex e_j, where j = v_max_abs_index.
|
|
|
|
|
v = dec.solve(Vector::Unit(n, v_max_abs_index)); // v = inv(matrix) * e_j.
|
|
|
|
|
lower_bound = internal::VectorL1Norm(v);
|
|
|
|
|
if (lower_bound <= old_lower_bound) {
|
|
|
|
|
// Break if the gradient step did not increase the lower_bound.
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if (!is_complex) {
|
|
|
|
|
old_sign_vector = sign_vector;
|
|
|
|
|
old_v_max_abs_index = v_max_abs_index;
|
|
|
|
|
old_lower_bound = lower_bound;
|
|
|
|
|
}
|
|
|
|
|
// The following calculates an independent estimate of ||matrix||_1 by
|
|
|
|
|
// multiplying matrix by a vector with entries of slowly increasing
|
|
|
|
|
// magnitude and alternating sign:
|
|
|
|
|
// v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1.
|
|
|
|
|
// This improvement to Hager's algorithm above is due to Higham. It was
|
|
|
|
|
// added to make the algorithm more robust in certain corner cases where
|
|
|
|
|
// large elements in the matrix might otherwise escape detection due to
|
|
|
|
|
// exact cancellation (especially when op and op_adjoint correspond to a
|
|
|
|
|
// sequence of backsubstitutions and permutations), which could cause
|
|
|
|
|
// Hager's algorithm to vastly underestimate ||matrix||_1.
|
|
|
|
|
Scalar alternating_sign = 1;
|
|
|
|
|
for (int i = 0; i < n; ++i) {
|
|
|
|
|
v[i] = alternating_sign * static_cast<Scalar>(1) +
|
|
|
|
|
(static_cast<Scalar>(i) / (static_cast<Scalar>(n - 1)));
|
|
|
|
|
alternating_sign = -alternating_sign;
|
|
|
|
|
}
|
|
|
|
|
v = dec.solve(v);
|
|
|
|
|
const Scalar alternate_lower_bound =
|
|
|
|
|
(2 * VectorL1Norm(v)) / (3 * static_cast<Scalar>(n));
|
|
|
|
|
return numext::maxi(lower_bound, alternate_lower_bound);
|
|
|
|
|
old_v_max_abs_index = v_max_abs_index;
|
|
|
|
|
old_lower_bound = lower_bound;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Partial specialization for complex matrices.
|
|
|
|
|
template <typename Decomposition, bool IsSelfAdjoint>
|
|
|
|
|
struct EstimateInverseMatrixL1NormImpl<Decomposition, IsSelfAdjoint, true> {
|
|
|
|
|
typedef typename Decomposition::MatrixType MatrixType;
|
|
|
|
|
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
|
|
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
|
typedef typename internal::plain_col_type<MatrixType>::type Vector;
|
|
|
|
|
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type
|
|
|
|
|
RealVector;
|
|
|
|
|
|
|
|
|
|
// Shorthand for vector L1 norm in Eigen.
|
|
|
|
|
static inline RealScalar VectorL1Norm(const Vector& v) {
|
|
|
|
|
return v.template lpNorm<1>();
|
|
|
|
|
// The following calculates an independent estimate of ||matrix||_1 by
|
|
|
|
|
// multiplying matrix by a vector with entries of slowly increasing
|
|
|
|
|
// magnitude and alternating sign:
|
|
|
|
|
// v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1.
|
|
|
|
|
// This improvement to Hager's algorithm above is due to Higham. It was
|
|
|
|
|
// added to make the algorithm more robust in certain corner cases where
|
|
|
|
|
// large elements in the matrix might otherwise escape detection due to
|
|
|
|
|
// exact cancellation (especially when op and op_adjoint correspond to a
|
|
|
|
|
// sequence of backsubstitutions and permutations), which could cause
|
|
|
|
|
// Hager's algorithm to vastly underestimate ||matrix||_1.
|
|
|
|
|
Scalar alternating_sign = 1;
|
|
|
|
|
for (int i = 0; i < n; ++i) {
|
|
|
|
|
v[i] = alternating_sign * static_cast<RealScalar>(1) +
|
|
|
|
|
(static_cast<RealScalar>(i) / (static_cast<RealScalar>(n - 1)));
|
|
|
|
|
alternating_sign = -alternating_sign;
|
|
|
|
|
}
|
|
|
|
|
v = dec.solve(v);
|
|
|
|
|
const RealScalar alternate_lower_bound =
|
|
|
|
|
(2 * internal::VectorL1Norm(v)) / (3 * static_cast<RealScalar>(n));
|
|
|
|
|
return numext::maxi(lower_bound, alternate_lower_bound);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline RealScalar compute(const Decomposition& dec) {
|
|
|
|
|
const int n = dec.rows();
|
|
|
|
|
const Vector ones = Vector::Ones(n);
|
|
|
|
|
Vector v = ones / n;
|
|
|
|
|
v = dec.solve(v);
|
|
|
|
|
RealScalar lower_bound = VectorL1Norm(v);
|
|
|
|
|
if (n == 1) {
|
|
|
|
|
return lower_bound;
|
|
|
|
|
}
|
|
|
|
|
// lower_bound is a lower bound on
|
|
|
|
|
// ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1
|
|
|
|
|
// and is the objective maximized by the ("super-") gradient ascent
|
|
|
|
|
// algorithm.
|
|
|
|
|
// Basic idea: We know that the optimum is achieved at one of the simplices
|
|
|
|
|
// v = e_i, so in each iteration we follow a super-gradient to move towards
|
|
|
|
|
// the optimal one.
|
|
|
|
|
RealScalar old_lower_bound = lower_bound;
|
|
|
|
|
int v_max_abs_index = -1;
|
|
|
|
|
int old_v_max_abs_index = v_max_abs_index;
|
|
|
|
|
for (int k = 0; k < 4; ++k) {
|
|
|
|
|
// argmax |inv(matrix)^* * sign_vector|
|
|
|
|
|
RealVector abs_v = v.cwiseAbs();
|
|
|
|
|
const Vector psi =
|
|
|
|
|
(abs_v.array() == 0).select(v.cwiseQuotient(abs_v), ones);
|
|
|
|
|
v = solve_helper<Decomposition, Vector, IsSelfAdjoint>::solve_adjoint(dec, psi);
|
|
|
|
|
const RealVector z = v.real();
|
|
|
|
|
z.cwiseAbs().maxCoeff(&v_max_abs_index);
|
|
|
|
|
if (v_max_abs_index == old_v_max_abs_index) {
|
|
|
|
|
// Break if the solution stagnated.
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
// Move to the new simplex e_j, where j = v_max_abs_index.
|
|
|
|
|
v.setZero();
|
|
|
|
|
v[v_max_abs_index] = 1;
|
|
|
|
|
v = dec.solve(v); // v = inv(matrix) * e_j.
|
|
|
|
|
lower_bound = VectorL1Norm(v);
|
|
|
|
|
if (lower_bound <= old_lower_bound) {
|
|
|
|
|
// Break if the gradient step did not increase the lower_bound.
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
old_v_max_abs_index = v_max_abs_index;
|
|
|
|
|
old_lower_bound = lower_bound;
|
|
|
|
|
}
|
|
|
|
|
// The following calculates an independent estimate of ||matrix||_1 by
|
|
|
|
|
// multiplying matrix by a vector with entries of slowly increasing
|
|
|
|
|
// magnitude and alternating sign:
|
|
|
|
|
// v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1.
|
|
|
|
|
// This improvement to Hager's algorithm above is due to Higham. It was
|
|
|
|
|
// added to make the algorithm more robust in certain corner cases where
|
|
|
|
|
// large elements in the matrix might otherwise escape detection due to
|
|
|
|
|
// exact cancellation (especially when op and op_adjoint correspond to a
|
|
|
|
|
// sequence of backsubstitutions and permutations), which could cause
|
|
|
|
|
// Hager's algorithm to vastly underestimate ||matrix||_1.
|
|
|
|
|
RealScalar alternating_sign = 1;
|
|
|
|
|
for (int i = 0; i < n; ++i) {
|
|
|
|
|
v[i] = alternating_sign * static_cast<RealScalar>(1) +
|
|
|
|
|
(static_cast<RealScalar>(i) / (static_cast<RealScalar>(n - 1)));
|
|
|
|
|
alternating_sign = -alternating_sign;
|
|
|
|
|
}
|
|
|
|
|
v = dec.solve(v);
|
|
|
|
|
const RealScalar alternate_lower_bound =
|
|
|
|
|
(2 * VectorL1Norm(v)) / (3 * static_cast<RealScalar>(n));
|
|
|
|
|
return numext::maxi(lower_bound, alternate_lower_bound);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
} // namespace internal
|
|
|
|
|
} // namespace Eigen
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|